跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林宏誠
Hung-Cheng Lin
論文名稱: 氮化銦鎵綠光發光二極體之研製
Investigation of InGaN Green Light-Emitting Diodes
指導教授: 綦振瀛
Jen-Inn Chyi
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 97
語文別: 英文
論文頁數: 129
中文關鍵詞: 氮化鎵氮化銦鎵發光二極體
外文關鍵詞: GaN, InGaN, LED
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為開發525 nm 氮化銦鎵多重量子井綠光發光二極體磊晶及製程關鍵技術。首先我們提出兩種有效提升綠光發光二極體效率的磊晶技術,其一是『三甲基銦處理量子井磊晶技術』,其二是『氮化銦鎵/氮化鎵超晶格結構與調變摻雜鎂磊晶技術』,分別研究其材料特性及探討發光效率提升之原理。隨後將氮化鎵及綠光發光二極體結構成長於不同幾何外型之微透鏡陣列圖案化藍寶石基板上方,研究其成長模式與材料特性,並分析其對於提升綠光發光二極體發光效率之影響。最後,我們提出兩種有效提升光萃取效率的製程技術,分別為『自然形成遮罩法濕式蝕刻藍寶石基板技術』與『利用切割道圖案化提升光萃取效率技術』,並探討不同蝕刻深度對於元件光電特性及萃取效率之影響。
    在探討三甲基銦處理量子井提升綠光發光二極體發光效率的研究上,藉由原子力顯微鏡與穿遂式電子顯微鏡觀察分析,我們發現三甲基銦處理量子井技術,可以有效降低量子井內部的V型缺陷密度,並改善量子井介面間的平坦度。藉由此技術,綠光發光二極體操作於20 mA下,其發光效率有43%的提升。在『氮化銦鎵/氮化鎵超晶格結構與調變摻雜鎂磊晶技術』方面,我們利用氮化銦鎵/氮化鎵超晶格結構的極化場效應,與調變摻雜技術,可以有效提升鎂的活化率,並可降低材料串連阻值,藉由此技術應用於綠光發光二極體,可以有效提升約兩倍之發光效率。在電性方面,使用此成長技術之綠光發光二極體具有很低的逆向漏電流之優點。
    在成長氮化鎵與綠光發光二極體結構於不同幾何外型之微透鏡陣列圖案化藍寶石基板上方之研究,藉由掃瞄式電子顯微鏡、穿遂式電子顯微鏡、電子束激發光譜法觀察分析氮化鎵成長模式與材料特性,我們發現抑制氮化鎵之晶核層成長於微透鏡幾何外型之凸部,可以提供較多側向成長氮化鎵區域,減少缺陷密度,進而提升氮化鎵之材料品質。接著我們將525 nm 綠光發光二極體結構成長於不同幾何外型之微透鏡圖案藍寶石基板,我們發現其有不同之發光強度。經由拉慢光譜及X光繞射研究殘餘應力顯示,底層氮化鎵殘餘應力越小,綠光發光二極體之發光效率越高。
    在『自然形成遮罩法應用於濕蝕刻藍寶石基板技術』的研究上,藉由高溫硫酸蝕刻藍寶石基板表面,形成Al(SO4)及Al(SO4)3•17H2O之多晶硫酸鹽鋁化合物做為自然遮罩,並同時蝕刻藍寶石基板,再配合高溫磷酸兩段式蝕刻法,去除自然遮罩,形成微角錐幾何外型之圖案化藍寶石基板。此技術應用於氮化銦鎵發光二極體上,約有20%效率提升,此種技術由於不需要額外黃光微影製程技術,具有簡單且低成本之優點。在『利用切割道圖案化提升發光效率之製程技術』的研究上,我們提出一種提高光萃取效率之方法,此技術對於操作電壓的影響相當少(約0.04V),這是因為將電流路徑與高光萃取率區域分離,可將表面態或缺陷對於操作電壓之影響降到最低。在蝕刻深度的研究上,我們發現蝕刻深度對於光萃取效率有很大影響,當在蝕刻深度為1.5微米時,具有最高之光萃取效率,這是因為當蝕刻至藍寶石基板時,破壞了光波導區域,主動層所發出光無法順利傳導致高光萃取效率區域時,對於光萃取效率反而減少之效果。


    This dissertation describes the growth and characterization of InGaN/GaN multiple-quantum-well (MQW) green light-emitting diode structures grown by low-pressure metal-organic vapor phase epitaxy (MOVPE). The content of this thesis is divided into the following three parts.
    First, we propose two methods for enhancing the luminescence efficiency of MQW. They are trimethylindium (TMIn) treatment process and Mg modulation-doped InGaN/GaN superlattices (MD-SLS) structure. Green light-emitting diodes prepared by the TMIn treatment method exhibit higher output power than the control device. The external quantum efficiency of the LEDs is increased by 43%. Both atomic force microscopy and transmission electron microscopy images indicate that TMIn treatment process produces InGaN/GaN MQW with smooth interface and low V-shape defect density, which are essential for high efficiency InGaN/GaN LEDs in the green and longer wavelength region. In addition, we demonstrate that low-temperature grown Mg modulation-doped InGaN/GaN superlattices structure is well suited for the p-contact layer of InGaN-based green LEDs. The light output of LEDs with this p-contact layer is increased approximately twofold as compared with that of conventional LEDs. The observed increase in quantum efficiency is attributed to the enhanced activation of Mg through the piezoelectric field in MD-SLS.
    Second, we prepare a series of patterned sapphire substrates with micro-lens of different shapes. Their effects on growth mode, material quality, residual strain, as well as the optical properties of the GaN epilayers and 525 nm green LEDs are systematically investigated. Growth mode analysis shows that micro-lens with a sharp tip prohibits the nucleation and growth of GaN on its top and leads to a wider lateral growth region with low dislocation density. Green light-emitting diodes grown on these PSSs also exhibit different external quantum efficiency. Experimental results show that the output power of 525 nm green LEDs is higher when grown on GaN with lower residual strain. The spectral blue shift with injection current is also less. This phenomenon might be attributed to the lower internal field in the quantum wells grown on GaN buffer layer with lower residual strain.
    Finally, we present two novel patterning techniques to improve the external quantum efficiency of InGaN/GaN quantum well light-emitting diodes. They are naturally etched sapphire substrates (NESSs) and dicing streets technology. Simply leaving a sapphire substrate in hot sulfuric acid, faceted islands are formed on the substrate due the spontaneous formation of an insoluble mixture of polycrystalline aluminum sulfates as a natural mask. It is shown that the light output power of InGaN LEDs grown on the substrate is enhanced by nearly 20% despite the fact that the LEDs already have an indium-tin oxide transparent contact layer and a roughened surface. The uniformity of luminescence intensity and wavelength of the LEDs grown on two inch NESSs is also better than that of the LEDs grown on flat sapphire substrates. Furthermore, patterning dicing streets is also found effective in enhancing the light extraction efficiency of InGaN/GaN multiple-quantum-well light-emitting diodes. The external quantum efficiency is increased by 9.4% for the LEDs with a partially etched pattern while its forward voltage is increased only 0.04 V. This result demonstrates that the proposed approach, which separates the current flow from the light extraction region, gives less adverse effect often encountered in conventional patterning and roughening processes.

    CONTENTS 中文論文提要....................................................................................................i Dissertation Abstract…………………………………………….....………..iii Contents……………………………………………………………………....vii Table Captions………..……………………………………………………….x Figure Captions……..………………………………………………………...xi Chapter 1 Introduction 1.1 Development of Wide Band-gap Nitride-based Light-emitting Diodes……………………………………………………..01 1.2 Development of InGaN Green Light-emitting Diodes………………….. 03 1.2.1 Polarization Effect………………………………………………..05 1.2.2 V-shape Defect……………………………………………………06 1.2.3 Carrier Leakage Effect……………………………………………07 1.2.4 Light Extraction…………………………………………………..07 1.3 Brief Introduction of This Dissertation…………………………………...09 Chapter 2 Luminescence Efficiency Investigation of InGaN Multiple-quantum-well Green Light-emitting Diodes 2.1 Trimethylindium (TMIn) Treatment Surface Smoothing Process………………………………………………………11 2.1.1 Introduction of TMIn Treatment Surface Smoothing Process………………………………………………..11 2.1.2 Experimental Details……………………………………………..12 2.1.3 Effect of TMIn Treatment Time…………………………………13 2.1.4 Effect of TMIn Treatment Location……………………………..18 2.1.5 Effect of TMIn Treatment Temperature…………………………19 2.1.6 Mechanism of TMIn Treatment…………………………………21 2.1.7 LED Device Results………………………………………………23 2.2 Mg-modulation-doped InGaN/GaN Superlattices………………………..25 2.2.1 Introduction of Mg-modulation-doped InGaN/GaN Superlattices……………………………………………………...25 2.2.2 Experiment Details………………………………………………25 2.2.3 Effect of Mg-modulation-doped InGaN/GaN Superlattices…………………………………………………….26 2.2.4 Material Quality Modification…………………………………...29 2.2.5 LED Device Results……………………………………………..33 2.3 Summary…………………………………………………………………..39 Chapter 3 Growth and Characterization of Epitaxial GaN Material and Light-emitting Diodes on Lens Shape Patterned Sapphire Substrates 3.1 Introduction of Lens Shape Patterned Sapphire Substrates……………….41 3.2 Experiment Details………………………………………………………..42 3.3 Results and Dissuasion……………………………………………………43 3.3.1 Growth Mode Analysis…………………………………………….43 3.3.2 Material Characterization of GaN Grown on Micro-lens PSS….…49 3.3.3 Electrical and Optical Properties of LEDs on the PSS…………….52 3.3.4 Residual Stress of GaN Grown on Micro-lens PSS………………..54 3.4 Summary…………………………………………………………………..58 Chapter 4 Novel Pattern Technologic for InGaN Light-emitting Diodes 4.1 Masklessly Wet-etched Sapphire Substrate………………………………59 4.1.1 Introduction of Masklessly Wet-etched Sapphire Substrate……...60 4.1.2 Experiment Details……………………………………………..…61 4.1.3 Etched Face Analysis……………………………………………..61 4.1.4 Effect of Etching Time……………………………………………62 4.1.5 Electrical and Optical Properties of LEDs on the NESSs………...67 4.2 Patterning the Dicing Streets……………………………………………...70 4.2.1 Introduction of Patterning the Dicing Streets…………………….70 4.2.2 Experiment Details……………………………………………….72 4.2.3 Effect of Etching Depth..…………………………………………73 4.2.4 Light Extraction Analysis………………………………………...77 4.2.5 The Reliability Characteristics……………………………………79 4.3 Summary……………………………………………………………...…80 Chapter 5 Conclusions and Future Work………………………………….81 Appendixes…………………………………………………………………...85 Reference……………………………………………………………………..90 Publication List……………………………………………………………..107 Table Captions Table 2.1: Optical properties of the InGaN/GaN MQWs grown with TMIn treatment for 60, 120, and 180 s. Table 2.2: Optical properties of the InGaN/GaN MQWs grown with different TMIn treatment location. Table 2.3: Optical properties of the InGaN/GaN MQWs grown with different TMIn treatment temperature. Table 2.4: Summary of structural and Hall measurements. Table 2.5: Results of root-mean-square surface roughness and etch-pit-density (EPD) of the LED with different p type growth condition. Table 3.1: Results of X-ray diffraction (XRD), photoluminescence (PL), etch pit density (EPD) and CL pit density (CL-PD) measurement on 5-μm-thick GaN epilayers grown on type I, type II, and type Ш micro-lens PSS. Table 3.2: Summary of InGaN LEDs grown on the three types patterned sapphire substrates. Table 3.3: Results of μ-Raman and XRD measurements on 5-μm-thick GaN epilayers grown on type I, type II, and type Ш micro-lens PSS. Table 4.1: Summary of the average etching depth, mesa size, density, and root-mean-square (RMS) roughness of GaN epilayers with different etching time. Table 4.2: Summary of structural and optical characteristics of GaN and InGaN LEDs grown on NESSs prepared with different etching time. Table 4.3: Overview of GaN LEDs on patterned sapphire substrate. Table 4.4: Results of the wafer mapping of forward voltage (Vf) at 20 mA of the LEDs at various etching depth. Table 4.5: Overview of the GaN LEDs with pattern technology. Table 5.1: Various models for the efficiency droop. Figure Captions Fig. 1.1: Evolution of nitride semiconductor. Fig. 1.2: Chronological change of EQE of InGaN-GaN green LEDs. Fig. 1.3: State-of-art EQE for visible-spectrum LEDs. Fig. 1.4: Evolution of extraction efficiencies for InGaN-GaN LEDs. Fig. 2.1: RT PL spectra and XRD spectra of InGaN/GaN MQWs with and without TMIn treatment. Fig. 2.2: Temperature-dependent integrated PL intensity of InGaN/GaN MQW with and without TMIn treatment. Fig. 2.3: Atomic force microscopic images (3×3 μm2) of the surface morphology of [(a) and (b)] SQW and [(c) and (d)] MQW structures without and with TMIn treatment, respectively. Fig. 2.4: TEM images of the InGaN/GaN MQW with (a) and without (b) TMIn treatment. Fig. 2.5: RT PL spectra of InGaN/GaN MQWs with different TMIn treatment location. Fig. 2.6: RT PL spectra of InGaN/GaN MQWs with different TMIn treatment temperature. Fig. 2.7: A simple schematic diagram to illustrate the growth mechanism: (a) As grown InGaN/GaN, (b) TMIn treatment and inter diffusion, (c) Indium cluster remove, and (d) Indium as surfactant for the grow GaN barrier layer. Fig. 2.8: Light output-current characteristics of the LEDs grown with and without TMIn treatment. Fig. 2.9: The band diagram for the Mg-doped In0.07Ga0.93N/GaN MD-SLS. Fig. 2.10: Temperature dependences of the hole concentration in sample A and C. Fig. 2.11: XRD curve of the p type InGaN/GaN MD SLS with different growth temperature. Fig. 2.12: Measured hole concentration (Pc), mobility (μM), resistivity (ρR), indium composite, and RMS surface roughness (RMSR) of p-InGaN MD-SLS samples growth from 840 to 920 oC. Fig. 2.13: Measured hole concentration, mobility, resistivity and RMS roughness of p-InGaN MD-SLS samples growth with various Mg flow from 50 to 150 sccm at 900 oC. Fig. 2.14: Electroluminescence intensity of LED chips with the three p-type doping schemes. At an injection current of 20 mA, the spectral width of the emission for sample A’ to C’ is 155.1 meV, 152.2 meV, and 146.7 meV, respectively. Fig. 2.15: SIMS profiles of Mg for HT p-GaN and LT p-InGaN/GaN MD-SLS. Fig. 2.16: The band diagram for the p-GaN LED and p-InGaN/GaN MD-SLS LED. Fig. 2.17: I-V characteristic of LED chips with three p-type doping schemes. Fig. 2.18: Atomic force microscopic images (10×10 μm2) of the surface morphology of sample A’ to C’ LED structures with different p type growth condition. Fig. 3.1: Atomic force microscopic images (10×10 μm2) of the surface morphology of (a) type I micro-lens, (b) type II micro-lens, (c) type Ш micro-lens. Their diameter/spacing/depth are about 3/1.5/1.5, 3/1.5/1.6, and 3/2/1.7 µm, respectively. Fig. 3.2: Scanning electron microscopy (SEM) images of GaN epilaers grown on three types of micro-lens PSS for growth time (1a)/(2a)/(3a) 20 min, (1b)/(2b)/(3b) 60 min, and (1c)/(2c)/(3c) 180 min. Fig. 3.3: (a) Cross-sectional and (b) top view SEM images of a GaN layer grown on types I micro-lens PSS for growth time 20 min. Fig. 3.4: A stick and ball diagram of a hexagonal structure. The density of dangling bond for (a) {1-101} N-polarity (b) {11-22} N-polarity is 16 nm-2 and 18 nm-2, respectively. (Lc=5.185Å, La=3.189Å) Fig. 3.5: (a)/(b)/(c) Cross-sectional SEM images and (d)/(e)/(f) schematic growth modes of GaN grown on type I, type II, and type Ш micro-lens PSSs. Fig. 3.6: (a)/(b)/(c) Plan view CL mapping and (d)/(e)/(f) cross-sectional TEM images of a 5-μm-thick GaN layer grown on three types PSS. Fig. 3.7: Typical peak energy, light output power and external quantum efficiency for the InGaN LEDs grown on the three types patterned sapphire substrates. Fig. 3.8: E2-high phonon peak of 250 μm-thick GaN substrate, 5 μm-thick GaN grown on type I, type II, and type Ш micro-lens PSSs. Higher wave-number means higher compressive strain. Fig. 4.1: Nomarski optical images of a wet-etched sapphire sample after: (a) etching in sulfuric acid (96%) at 275 oC for 5 min, and (b) etching in a phosphoric acid (86%)-based solution at 275 oC for 2 min. (c) Facets that identified by atomic force microscopy. The insets of (a) and (b) are the SEM images of the sapphire surface, respectively. Fig. 4.2: Atomic force microscopic images (50×50 μm2) of the surface morphology of sapphire with different etching time from 2.5 to 20 minutes. Fig. 4.3: SEM images of GaN grown on patterned sapphire substrates right after the vertical growth stage: (a) a cross-sectional view and (b) a 45 view, and right after the lateral growth stage: (c) a cross-sectional view and (d) a 45 view. Fig. 4.4: Typical light output power, external quantum efficiency, and forward voltage versus forward current for the InGaN LEDs grown on the patterned and plane sapphire substrates. Fig. 4.5: Wafer mapping results on the (a) luminescence intensity, (b) forward voltage (Vf), and (c) dominant wavelength of the LEDs (~500 dies) grown on conventional sapphire and NESS substrates. Fig. 4.6: (a)/(b) Schematics of LED with an etched patterned dicing street. Fig. 4.7: (a) Top view SEM image for the etched patterned dicing street LED. (b) SEM image of area A shown in (a). Fig. 4.8: Wafer mapping of (a)/(b)/(c)/(d)/(e) forward voltage (Vf) of the sample A to E. Fig. 4.9: Light output power of the LEDs at various etching depth. Plan view photomicrograph of the device in operation is shown in the inset. Fig. 4.10: Luminescence intensity imaged by a charge-coupled device camera for the LED chips (a) without pattern, (b) with a partially etched pattern, and (c) with a fully etched pattern driven at 25 mA, respectively. The images were taken under a 20-dB attenuation filter. Fig. 4.11: Typical output beam pattern for the different dicing streets patterned LED. Fig. 4.12: Plots at drop rate of output power in the control LED and dicing street LED. Fig. A.1: Illustration of the coupling of light from an LED light source into an optical fiber.

    Reference
    [1] S. Nakamura, and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes. London: Taylor & Francis, 2000, ch. 1.
    [2] S. J. Peraton, C. R. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics. London: Springer-Verlag, 2006, ch. 3.
    [3] H. Morkoc, Handbook of Nitride Semiconductors and Devices. Weinheim: Wiley-VCH, 2008, ch. 1.
    [4] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Luminescence, vol. 4, p. 63, 1971.
    [5] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “GaN electroluminescent diodes,” RCA Review, vol. 32, p. 383, 1971.
    [6] H. P. Maruska, W. C. Rhines, and D. A. Stevenson, “Preparation of Mg-doped GaN diodes exhibiting violet electroluminescence,” Mat. Res. Bull., vol. 7, p. 777, 1972.
    [7] H. Amano, N. Sawaki, I. Akasaki, and T. Toyoda, “Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
    [8] H. Amano, M.Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy elecron beam irradiation,” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
    [9] I. Akasaki, H. Amano, K. Itoh, N, Koide, and K. Manabe, “GaN based UV/blue light-emitting devices,” GaAs and Related Compounds conference, Inst. Phys. Conf. Ser., vol. 129, p.851, 1992.
    [10] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L139-L142, 1992.
    [11] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, 1995.
    [12] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., vol. 69, pp. 4056-4058, 1996.
    [13] S. Nakamura, T. Mukai and M, Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green-light-emitting diodes,” J. Appl. Phys., vol. 76, pp. 8189-8191, 1994.
    [14] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, T. Mukai, “Superbright green InGaN single-quantum-well-structure light-enmitting diodes,” Jpn. J. Appl. Phys., vol. 34, pp. L1332-L1335, 1995.
    [15] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 3976-3981, 1999.
    [16] J. Edmond, A. Abare, M. Bergman, J. Bharathan, K. L. Bunker, D. Emerson,. K. Haberern, J. Ibbetson, M. Leung, P. Russel, and D. Slater, “High efficiency GaN-based LEDs and lasers on SiC,” J. Cryst. Growth, vol. 272, pp. 242-250, 2004.
    [17] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light emitting diodes for solid-state lighting,” IEEE J. Display Technol., vol. 3, pp. 160-175, 2007.
    [18] D. Morita, M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S. Nagahama, and T. Mukai, “Watt-class high-output-power 365 nm ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys., vol. 43, pp. 5945-5950, 2004.
    [19] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light emitting diodes,” Jpn. J. Appl. Phys., vol. 45, pp. L1084-L1086, 2006.
    [20] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated-pyramid (Al0.5Ga1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999.
    [21] M. Peter, “Osram explores the route to high-performance greens,” Compound Semiconductor, pp. 16-18, Jun. 2008.
    [22] C. Wetzel, and T. Detchprohm, “RPI starts to extinguish the green gap,” Compound Semiconductor, pp. 21-23, Jan. 2009.
    [23] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865-868, 2000.
    [24] J. K. Sheu, G. C. Chi, and M. J. Jou, “Enhanced output power in an InGaN–GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer,” IEEE Photon. Technol. Lett., vol. 13, pp. 1164-1166, 2001.
    [25] C. F. Huang, T. Y. Tang, J. J. Huang, C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett. vol. 90, p. 151122, 2007.
    [26] H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, James S. Speck, S. P. DenBaars, and S. Nakamura, “Optical properties of yellow light-emitting diodes grown on semipolar (11 2) bulk GaN substrates,” Appl. Phys. Lett., vol. 92, p. 221110, 2008.
    [27] H.-C. Lin, H.-H. Liu, G.-Y. Lee, J.-I. Chyi, C.-M. Lu, K.-L. Fang, C.-W. Chao, T.-C. Wang, C.-J. Chang, and Solomon W. S. Chi, “Growth and characterization of GaN on micro-lens patterned sapphire substrates,” The Asia-Pacific Workshop on wide gap Semiconductors (APWS), Zhangjiajie, Hunan, China, proc. MO2-7, 2009.
    [28] N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 72, pp. 40-42, 1998.
    [29] C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett., vol. 85, pp. 866-868, 2004.
    [30] H.-C. Lin, R.-S. Lin, and J.-I. Chyi, “Enhancing the quantum efficiency of InGaN green light-emitting diodes by trimethylindium treatment,” Appl. Phys. Lett., vol. 92, p. 161113, 2008.
    [31] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 183507 2007.
    [32] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett., vol. 93, p. 041102, 2008.
    [33] S. Strite and H. Morkoc, “GaN, AlN, and InN: A review,” J. Vac. Sci. Technol., vol. B.10, pp. 1297-1267, 1992.
    [34] J. B. Limb, W. Lee, J. H. Ryou, D. Yoo, and R.D. Dupuis, “Comparison of GaN and In0.04Ga0.96N p-layers on the electrical and electroluminescence properties of green light emitting diodes,” J. Electron. Mater., vol. 36, pp. 426-430, 2007.
    [35] K. Kumakura, T. Makimoto and N. Kobayashi, “Activation energy and electrical activity of Mg in Mg-doped InxGa1-xN (x<0.2)”, Jpn. J. Appl. Phys., vol. 39, pp. L337-L339, 2000.
    [36] H.-C. Lin, G.-Y. Lee, H.-H. Liu, N.-W. Hsu, C.-C. Wu, and J.-I. Chyi, “Polarization-enhanced Mg doping in InGaN/GaN superlattices for green light-emitting diodes”, The Conference on Lasers and Electro-Optics (CLEO) and The International Quantum Electronics Conference (IQEC), Baltimore, Maryland, USA, proc. CMM4, 2009.
    [37] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett., vol. 74, pp. 3930-3932, 1999.
    [38] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O''Shea, M. J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett., vol. 78, pp. 3379-3381, 2001.
    [39] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quant. Electron., vol. 8, pp. 310-320, 2002.
    [40] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583-L585, 2001.
    [41] C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, pp. 9383-9385, 2003.
    [42] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 466-468, 2004.
    [43] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett., vol. 84, pp. 3885-3887, 2004.
    [44] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, pp. 855-857, 2004.
    [45] C.-F. Lin, Z.-J. Yang, J.-H. Zheng, and J.-J. Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall,” IEEE Photon. Technol. Lett., vol. 17, pp. 2038-2040, 2005.
    [46] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-High Efficiency White Light Emitting Diodes,” Jpn. J. Appl. Phys., vol. 45, pp. L1084-L1086, 2006.
    [47] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN–GaN light-emitting diodes,” Appl. Phys. Lett., vol. 89, p. 071109 (2006).
    [48] H.-C. Lin, R.-S. Lin, J.-I. Chyi, C.-M. Lee, “Light output enhancement of InGaN light-emitting diodes grown on masklessly etched sapphire substrates,” IEEE Photon. Technol. Lett., vol. 20, pp. 1621–1623, 2008.
    [49] H.-C. Lin, Y.-C. Tseng, J.-I Chy, and C.-M. Lee, “Enhancing the light extraction of InGaN light-emitting diodes by patterning the dicing streets,” CLEO/QELS, San Francisco, U.S.A., proc. JthA68, 2008.
    [50] T. Mukai, S. Nagahama, T. Yanamoto, M. Sano, D. Morita, M. Yamamoto, M. Nonaka, K. Yasutomo, and K. Akaishi, “High output power 365 nm ultraviolet LEDs and white LEDs,” Phys. Status Solidi C, vol. 2, pp. 3884-3886, 2005.
    [51] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, “Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density,” Appl. Phys. Lett., vol. 79, pp. 215-217, 2001.
    [52] C. J. Sun, M. Zubair Anwar, Q. Chen, J. W. Yang, M. Asif Khan, M. S. Shur, A. D. Bykhovski, Z. Liliental-Weber, C. Kisielowski, M. Smith, J. Y. Lin, and H. X. Xiang, “Quantum shift of band-edge stimulated emission in InGaN–GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 70, pp. 2978-2980, 1997.
    [53] Ig-Hyeon Kim, Hyeong-Soo Park, Yong-Jo Park, and Taeil Kim, “Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films,” Appl. Phys. Lett., vol. 73, pp. 1634-1636, 1998.
    [54] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, “Pit formation in GaInN quantum wells,” Appl. Phys. Lett., vol. 72, pp. 710-712, 1998.
    [55] H. K. Cho, J. Y. Lee, N. Sharma, J. Humphreys, G. M. Yang, and C. S. Kim, “Structural and optical characteristics of InGaN/GaN multiple quantum Wells with different growth interruption,” Phys. Status Solidi B, vol. 228, pp. 165-168, 2001.
    [56] F. Widmann, B. Daudin, G. Feuillet, N. Pelekanos, and J. L. Rouvière, “Improved quality GaN grown by molecular beam epitaxy using In as a surfactant,” Appl. Phys. Lett., vol. 73, pp. 2642-2644, 1998.
    [57] C. Adelmann, R. Langer, G. Feuillet, and B. Daudin, “Indium incorporation during the growth of InGaN by molecular-beam epitaxy studied by reflection high-energy electron diffraction intensity oscillations” Appl. Phys. Lett., vol. 75, pp. 3518-3520, 1999.
    [58] G. Pozina, J. P. Bergman, B. Monemar, S. Yamaguchi, H. Amano, and I. Akasaki, “Optical spectroscopy of GaN grown by metalorganic vapor phase epitaxy using indium surfactant,” Appl. Phys. Lett., vol. 76, pp. 3388-3390, 2000.
    [59] C. Kruse, S. Einfeldt, T. Böttcher, and D. Hommel, “In as a surfactant for the growth of GaN (0001) by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., vol. 79, pp. 3425-3427, 2001.
    [60] J. E. Northrup, and Chris G. Van de Walle, “Indium versus hydrogen-terminated GaN(0001) surfaces: Surfactant effect of indium in a chemical vapor deposition environment,” Appl. Phys. Lett., vol. 84, pp. 4322-4324, 2004.
    [61] C. Adelmann, R. Langer, E. Martinez-Guerrero, H. Mariette, G. Feuillet, and B. Daudin, “Indium-modified growth kinetics of cubic and hexagonal GaN in molecular beam epitaxy,” J. Appl. Phys., vol. 86, pp. 4322-4325, 1999.
    [62] C.-C. Chuo, C.-M. Lee, T.-E. Nee, and J.-I. Chyi, “Effects of thermal annealing on the luminescence and structural properties of high indium-content InGaN/GaN quantum wells,” Appl. Phys. Lett., vol. 76, pp. 3902-3904, 2000.
    [63] C.-C. Chuo, C.-M. Lee, and J.-I.- Chyi, “Interdiffusion of In and Ga in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 78, pp. 314-316, 2001.
    [64] C.-C. Chuo, M.-N. Chang, F.-M. Pan, C.-M. Lee and J.-I. Chyi, “Effect of composition inhomogeneity on the photoluminescence of InGaN/GaN multiple quantum wells upon thermal annealing,” Appl. Phys. Lett., vol. 80, pp. 1138-1140, 2002.
    [65] S. J. Xu, X. C. Wang, and S. J. Chua, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 72, pp. 3335-3337, 1998.
    [66] J. Neugebauer and C. G. V. D. Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 69, pp. 503-505, 1996.
    [67] M.-S. Oh, M.-K. Kwon, I.-K. Park, S.-H. Baek, S.-J. Park, S.H. Lee, and J.J. Jung, “Improvement of green LED by growing p-GaN on In0.25GaN/GaN MQWs at low temperature,” J. Cryst. Growth, vol. 289, pp. 107-112 (2006).
    [68] C. Bayram, F. Hosseini Teherani, D. J. Rogers, and M. Razeghi, “A hybrid green light-emitting diode comprised of n-ZnO/(InGaN/GaN) multi-quantum-wells/p-GaN,” Appl. Phys. Lett., vol. 93, p. 081111, 2008.
    [69] C.-M. Lee, C.-C. Chuo, J.-F. Dai, X.-F. Zheng, and J.-I. Chyi, “Temperature dependence of the radiative recombination zone in InGaN/GaN multiple quantum well light-emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
    [70] P. Kozodoy, Y.P. Smorchkova, M. Hansen, H. Xing, S. P. DenBarrs, U.K. Mishra, A.W. Saxler, R. Perrin, and W.C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett., vol. 75, pp. 2444–2446, 1999.
    [71] T. Kuroda, R. Sasou , A. Tackeuchi , H. Sato , N. Horio, and C. Funaoka, “Time-resolved photoluminescence study of InGaN MQW with a p-contact layer,” Phys. Status Solidi B, vol. 28, pp. 125–128, 2001
    [72] K. Köhler, T. Stephan, A. Perona, J. Wiegert, M. Maier, K. Kunzer, and J. Wanger, “Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency,” J. Appl. Phys., vol. 97, p. 104914, 2005.
    [73] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “ Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,“ Appl. Phys. Lett., vol. 78, no. 12, pp. 1685–1687, 2001.
    [74] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431-L1433, 2002.
    [75] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 288-290, 2005.
    [76] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically intgrated sapphire microlenses,” Appl. Phys. Lett., vol. 84 pp. 2253-2255, March., 2004.
    [77] J. Cho, H. Kim, H. Kim, J. W. Lee, S. Yoon, C. Sone, Y. Park, and E. Yoon, “Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate,” Phys. Status Solidi C, vol. 2, pp. 2874-2877, 2005.
    [78] J.-H. Lee, J. T. Oh, Y. C. Kim, and J.-H. Lee, “Stress Reduction and Enhanced Extraction Efficiency of GaN-Based LED Grown on Cone-Shape-Patterned Sapphire,” IEEE Photon. Technol. Lett., vol. 20, pp. 1563-1565, 2008.
    [79] H. Kudo, Y. Ohuchi, T. Jyouichi, T. Tsunekawa, H. Okagawa, K. Tadatomo, Y. Sudo, M. Kato, and T. Taguchi, “Demonstration of high-efficient InGaN-based violet light-emitting diodes with an external-quantum efficiency of more than 40%,” Phys. Status Solidi A, vol. 200, pp. 95-98, 2003.
    [80] C.-C. Pan, C.-H. Hsieh, C.-W. Lin, and J.-I. Chyi, “Light output improvement of InGaN ultraviolet light-emitting diodes by using wet-etched stripe-patterned sapphire substrates,” J. Appl. Phys., vol. 102, p. 084503, 2007.
    [81] P. Vennèguès, B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, “Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods,” J. Appl. Phys., vol. 87, pp. 4175-4181, 2000.
    [82] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth,” Phys. Status Solidi A, vol. 176, pp. 535-543, 1999.
    [83] B. Heying, X. H. Wu, A. S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Appl. Phys. Lett., vol. 68, pp. 643-645, 1996.
    [84] S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I. Erikson, “Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition,” Appl. Phys. Lett., vol. 70, pp. 420-422, 1997.
    [85]T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate,” Opt. Express, vol. 15, pp. 6670-6676, 2007.
    [86] T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, and S. Sakai, “Role of dislocation in InGaN phase separation,” Jpn. J. Appl. Phys., vol. 37, pp. L1195-L1198, 1998.
    [87] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382-385, 1997.
    [88] T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu, and S. Nakamura, “Quantum-confined Stark effect in an AlGaN/GaN/AlGaN single quantum well structure,” Jpn. J. Appl. Phys., vol. 38, pp. L914-916, 1999.
    [89] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, and H. Yang, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire,” Appl. Phys. Lett., vol. 83, pp. 677-679, 2003.
    [90] S. Hearne, E. Chason, J. Han, J. A. Floro, J. Figiel, J. Hunter, H. Amano, and I. S. T. Tsong, “Stress evolution during metalorganic chemical vapor deposition of GaN,” Appl. Phys. Lett., vol. 74, pp. 356-358, 1999.
    [91] A. F. Wright, “Basal-plane stacking faults and polymorphism in AlN, GaN, and InN,” J. Appl. Phys., vol. 82, pp. 5259-5261, 1997.
    [92] F. Bernardini and V. Fiorentini, “Spontaneous versus Piezoelectric Polarization in III-V Nitrides: Conceptual Aspects and Practical Consequences,” Phys. Status Solidi B, vol. 216, pp. 391-398, 1999.
    [93] J. L. Sa´nchez-Rojas, J. A. Garrido, and E. Muňoz, “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices,” Phys. Rev. B, vol. 61, pp. 2773-2778, 2000.
    [94] F. Bernardini, V. Fiorentini and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, pp. R10024-R10027, 1997.
    [95] R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M.Lomascolo, A. Di Carlo, F. Della Sala, and P. Lugli, “Spontaneous polarization and piezoelectric field in GaN/Al0.15Ga0.85N quantum wells: Impact on the optical spectra,” Phys. Rev. B, vol. 61, pp. 2711-2715, 2000.
    [96]A. Bonfiglio, M. Lomascolo, G. Traetta, R. Cingolani, A. Di Carlo, F. Della Sala, P. Lugli, A. Botchkarev, and H. Morkoc, “Well-width dependence of the ground level emission of GaN/AlGaN quantum wells,” J. Appl. Phys., vol. 87, pp. 2289-2292, 2000.
    [97] R. W. McClelland, C. O. Bozler, and J. C. C. Fan, “A technique for producing epitaxial films on reuseable substrates,” Appl. Phys. Lett., vol. 37, pp. 560-562, 1980.
    [98] T. S. Zheleva, O.-H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Appl. Phys. Lett., vol. 71, pp. 2472-2474, 1997.
    [99] T. Shibata, H. Sone, K. Yahashi, M. Yamaguchi, K. Hiramatsu, N. Sawaki, and N. Itoh, “Hydride vapor-phase epitaxy growth of high-quality GaN bulk single crystal by epitaxial lateral overgrowth,” J. Cryst. Growth, vol. 189, pp. 67, 1998.
    [100] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” J. Cryst. Growth, vol. 221, pp. 316-326, 2000.
    [101] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, “A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE,” J. Cryst. Growth, vol. 221, pp. 334-337, 2000.
    [102] J. Xie, Ü. Özgür, Y. Fu, X. Ni, H. Morkoç, C. K. Inoki, T. S. Kuan, J. V. Foreman, and H. O. Everitt, “Low dislocation densities and long carrier lifetimes in GaN thin films grown on a SiNx nanonetwork,” Appl. Phys. Lett., vol. 90, p. 041107, 2007.
    [103] Y. Fu, Y. T. Moon, F. Yun, Ü. Özgür, J. Q. Xie, S. Dogan, H. Morkoç, C. K. Inoki, T. S. Kuan, L. Zhou, and D. J. Smith, “Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy,” Appl. Phys. Lett., vol. 86, p. 043108, 2005.
    [104] Ü. Özgür, Y. Fu, Y. T. Moon, F. Yun, H. Morkoç, H. O. Everitt, S. S. Park, and K. Y. Lee, “Long carrier lifetimes in GaN epitaxial layers grown using TiN porous network templates,” Appl. Phys. Lett., vol. 86, p. 232106, 2005.
    [105] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 18, pp. 1152-1154, 2006.
    [106] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett., vol. 89, p. 161105, 2006.
    [107] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1–xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett., vol. 83, pp. 4906-4908, 2003.
    [108] F. Dwikusuma, D. Saulys, and T. F. Kuech, “Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments,” J. Electrochem. Soc., vol. 149, pp. G603-G608, 2002.
    [109] S.-J. Kim, “Vertical electrode GaN-based light-emitting diode fabricated by selective wet etching technique,” Jpn. J. Appl. Phys., vol. 44, pp. 2921-2924, 2005.
    [110] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices,” J. Appl. Phys., vol. 86, pp. 1-78, 1999.
    [111] C.-F. Lin, Z.-J. Yang, J.-H. Zheng, and J.-J. Dai, “Assembled GaN : Mg inverted hexagonal pyramids formed through a photoelectrochemical wet-etching process,” IEEE Photon. Technol. Lett., vol. 17, pp. 2038-2040, 2005.
    [112] J.-S. Lee, J. Lee, S. Kim, and H. Jeon, “GaN-based light-emitting diode structure with monolithically integrated sidewall deflectors for enhanced surface emission,” IEEE Photon. Technol. Lett., vol. 18, pp. 1588-1590, 2006.
    [113] H. K. Cho, J. Jang, J.-H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K.-D. Lee, S. H. Kim, K. Lee, S.-K. Kim, and Y.-H. Lee, “Light extraction enhancement from nanoimprinted photonic crystal GaN-based blue lightemitting diodes,” Opt. Exp., vol. 14, pp. 8654-8660, 2006.
    [114] C. H. Kuo and H. C. Feng, “Nitride-based near-ultraviolet mesh mqw light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 19, pp. 1901-1903, 2007.
    [115] M. Baeumler, M. Kunzer, R. Schmidt, S. Liu, W. Pletschen, P. Schlotter, K. Köhler, U. Kaufmann, and J. Wagner, “Thermal and non-thermal saturation effects in the output characteristic of UV-to-violet emitting (AlGaIn)N LEDs,” Phys. Status Solidi A, vol. 204, pp. 1018-1024, 2007.
    [116] N. F. Gardner, G. O. Müller, Y. C. Shen, G. Chen, S. Watanabe, W. Götz, and M. R. Krames, “Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett., vol. 91, p. 243506, 2007.
    [117] J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett., vol. 92, p. 261103, 2008.
    [118] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett., vol. 91, p. 181113, 2007.
    [119] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes,” Appl. Phys. Lett., vol. 91, p. 231114, 2007.
    [120] I. V. Rozhansky and D. A. Zakheim, “Analysis of dependence of electroluminescence efficiency of AlInGaN LED heterostructures on pumping,” Phys. Status Solidi C, vol. 3, pp. 2160-2164, 2006.
    [121] I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Status Solidi A, vol. 204, pp. 227-230, 2007.
    [122] Y. Yang, X. A. Cao, and C. H. Yan, “Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes,” IEEE Trans. Electron Devices, vol. 55, pp. 1771-1775, 2008.
    [123] X. A. Cao, Y. Yang, and H. Guo, “On the origin of efficiency roll-off in InGaN-based light-emitting diodes,” J. Appl. Phys., vol. 104, p. 093108, 2008.
    [124] M. Maier, K. Köhler, M. Kunzer, W. Pletschen, and J. Wagner, “Reduced nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 041103, 2009.
    [125] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes,” Appl. Phys. Lett., vol. 94, p. 011113, 2009.
    [126] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Appl. Phys. Lett., vol. 93, p. 121107, 2008.
    [127] Y. Yang, X. A. Cao, and C. H. Yan, “Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates,” Appl. Phys. Lett., vol. 94, p. 041117, 2009.
    [128] S. J. Chang, Y. C. Lin, Y. K. Su, C. S. Chang, T. C. Wen, S. C. Shei, J. C. Ke , C. W. Kuo, S. C. Chen, C. H. Liu, “ Nitride-based LEDs fabricated on patterned sapphire substrates, ” Solid-State Electronics, vol. 47, pp. 1539-1542, 2003.
    [129] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C.Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN-GaN LEDs fabricated on stripe patterned sapphire substrates,” Materials Science and Engineering B, vol. 122, pp. 184-187, 2005.
    [130] T.-S. Oh, S.-H. Kim, T.-K. Kim, Y.-S. Lee, H. Jeong, G.-M. Yang, and E.-K Suh, “GaN-based light-emitting diodes on micro-lens patterned sapphire substrate,” Jpn. J. Appl. Phys., vol. 47, pp. 5333-5336, 2008.
    [131] J. Lee, S. Ahn, S. Kim, D.-U. Kim, H. Jeon, S.-J. Lee, and J.-H. Baek, “GaN light-emitting diode with monolithically integrated photonic crystals and angled sidewall deflectors for efficient surface emission,” Appl. Phys. Lett., vol. 94, p. 101105, 2009.
    [132] D.-H. Kim, C.-O Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J.-S. Im, C. Sone, Y. Park, W.-J. Choi, and Q-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, p. 203508, 2005.
    [133] T.-S. Kim, S.-M. Kim, Y.-H. Jang, and G.-Y. Junga, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett., vol. 91, p. 171114, 2007.
    [134] K. J. Vampola, N. N. Fellows, H. Masui, S. E. Brinkley, M. Furukawa, R. B. Chung, H. Sato, J. Sonoda, H. Hirasawa, M. Iza, S. P. DenBaars, and S. Nakamura, “Highly efficient broad-area blue and white light-emitting diodes on bulk GaN substrates,” Phys. Status Solidi A, vol. 206, pp. 200-202, 2009.
    [135] X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, “Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells,” Appl. Phys. Lett., vol. 93, p. 171113, 2008.
    [136] M. L. Reed, E. D. Readinger, H. Shen, M. Wraback, A. Syrkin, A. Usikov, O. V. Kovalenkov, and V. A. Dmitriev, “n-InGaN/p-GaN single heterostructure light emitting diode with p-side down,” Appl. Phys. Lett., vol. 93, p. 133505, 2008.
    [137] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates in nitrides from first principles,” Appl. Phys. Lett., vol. 94, p. 191109, 2009.
    [138] H.-H. Liu, P.-R. Chen, H.-C. Lin, J.-I. Chyi, “Reduction of the efficiency droop of InGaN quantum well light-emitting diodes by using an In0.04Ga0.96N pre-layer and trimethylindium treatment,” The 8th International Conference on Nitride Semiconductors (ICNS), Jeju Island, Korea, 2009.

    QR CODE
    :::