跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳正豪
Jheng-Hao CHEN
論文名稱: 對Gaver-Stehfest公式之研究與探討
指導教授: 李顯智
Hin-Chi Lei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 73
中文關鍵詞: Gaver-Stehfest拉普拉斯轉換常微分方程
外文關鍵詞: Gaver-Stehfest, Laplace transform, ODES
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討內容為:1.取12個函數進行Gaver-Stehfest公式之模擬誤差討論,2.利用簡單的變數轉改變Gaver-Stehfest公式之探討,3.應用於常微分方程時函數之局部計算及延伸探討。
    經初步研究討論,利用Gaver-Stehfest公式之數值模擬時,對於振盪之函數有定性上的誤差;而利用簡單的變數轉換,透過時間平移觀念,其能夠減緩並延長模擬的效果;在常微分方程應用上,利用局部計算之方式,能減少誤差之產生,在延伸方面之探討,時間越長其所採之時間間隔須越小,方能減少誤差之產生。


    This research includes the following issues:1.Investigating the simulation error induced by using the Gaver-Stehfest formula, 2.Improving the power of the Gaver-Stehfest formula by using some theorems about Laplace transform, 3.Investigating the application of the Gaver-Stehfest formula to differential equations.
    We found that when simulating the functions with oscillations the Gaver-Stehfest formula induced errors after one cycle of oscillation. This kind of drawback can be improved if we use some theorems about Laplace transform to reduce the error. When treating ODES we can extend the effective region of the Gaver-Stehfest formula by some technique of local extension.

    中文提要 ..............................................ii 英文提要 .............................................iii 誌謝 ..............................................iv 目錄 ...............................................v 圖目錄 ..............................................vi 表目錄 ..............................................ix 第一章 前 言..........................................1 第二章 GAVER-STEHFEST公式各種函數準確範圍之探討.......3 2-1 GAVER-STEHFEST公式的簡介.......................3 2-2 GAVER-STEHFEST公式探討與應用...................3 2-3 各函數的模擬比較..............................10 2-4 阻尼函數之模擬探討............................36 2-5 純衰減函數之探討..............................43 第三章 利用各種變數轉換改變GAVER-STEHFEST公式之探討..51 3-1 S軸上平移轉換.................................51 3-2 縮放轉換......................................52 3-3 微分轉換......................................54 3-4 積分轉換......................................55 第四章 利用GAVER-STEHFEST公式進行函數局部計算及延伸..65 第五章 結論..........................................69 參考文獻 ..............................................71 圖目錄 圖2-1 不同N值之比較( 1/(S^2+1) VS SIN(T) )..............5 圖2-2 不同N值之比較( 1/(S^2+1) VS SIN(T) )..............6 圖2-3 不同N值之比較( 1/(S^2+1) VS SIN(T) )..............7 圖2-4 不同N值之比較( 1/(S^2+1) VS SIN(T) )..............8 圖2-5 不同N值之比較( 1/(S^2+1) VS SIN(T) )..............9 圖2-6-1(1A) 各函數之誤差...............................11 圖2-6-2(2A) 各函數之誤差...............................12 圖2-6-3(3A) 各函數之誤差...............................13 圖2-6-4(4A) 各函數之誤差...............................14 圖2-6-5(5A) 各函數之誤差...............................15 圖2-6-6(6A) 各函數之誤差...............................16 圖2-6-7(7A) 各函數之誤差...............................17 圖2-6-8(8A) 各函數之誤差...............................18 圖2-6-9(9A) 各函數之誤差...............................19 圖2-6-10(10A) 各函數之誤差.............................20 圖2-6-11(11A) 各函數之誤差.............................21 圖2-6-12(12A) 各函數之誤差.............................22 圖2-6-1(1B) 各函數之誤差(二)...........................24 圖2-6-2(2B) 各函數之誤差(二)...........................25 圖2-6-3(3B) 各函數之誤差(二)...........................26 圖2-6-4(4B) 各函數之誤差(二)...........................27 圖2-6-5(5B) 各函數之誤差(二)...........................28 圖2-6-6(6B) 各函數之誤差(二)...........................29 圖2-6-7(7B) 各函數之誤差(二)...........................30 圖2-6-8(8B) 各函數之誤差(二)...........................31 圖2-6-9(9B) 各函數之誤差(二)...........................32 圖2-6-10(10B) 各函數之誤差(二).........................33 圖2-6-11(11B) 各函數之誤差(二).........................34 圖2-6-12(12B) 各函數之誤差(二).........................35 圖2-7-1 係數A值之比較(A=0.05)..........................37 圖2-7-2 係數A值之比較(A=0.5)...........................38 圖2-7-3 係數B值之比較(B=1).............................39 圖2-7-4 係數B值之比較(B=3).............................40 圖2-7-5 疊加性質.......................................42 圖2-8-1係數A=1.........................................44 圖2-8-2係數A=0.5.......................................45 圖2-8-3係數A=0.1.......................................46 圖2-8-4係數A=1.........................................47 圖2-8-5係數A=0.5.......................................48 圖2-8-6係數A=0.1.......................................49 圖3-1 G-S公式模擬與解析解之比較 (A=-0.1)...............58 圖3-2 G-S公式模擬與解析解之比較 (A=-0.2)...............59 圖3-3 G-S公式模擬與解析解之比較 (A=-0.3)...............59 圖4-1 G-S公式模擬與解析解之比較( T=10 ,N=22)...........66 圖4-2 G-S公式模擬與解析解之比較( T=4 ,N=22)............67

    [1]. B.davies and B Martin, ”Numerical inversion of
    the Laplace transform: a survey and comparision of
    methods.” J. Computational Plrys,,33 (1979) 1-32
    [2]. C. Montella, ” LSV modeling of electrochemical
    systems through numerical inversion of inversion of
    Laplace transform. I-The GS-LSV algorithm.”J.
    Electroamalytical chemistry, 614(2008)121-130.
    [3]. D. P. Gaver, Jr., ”Observing stochastic processes,
    and approximate transform inversion.” Operational
    Res., 14(1966) 444-459
    [4]. D. W. Widder, “ The inversion of the Laplace
    integral and the related moment problem,” Amer.
    Meth. Soc. Trans 36 (1934)107-200
    [5]. D. W. Widder, The Laplce Transform. Princeton
    University Press, Princetion, NJ.(1946)
    [6]. E. Detournay and A. H-D. Cheng, “ poroelastic
    response of borehole in a non-hydrostatic stress
    field.” Int. J. Rock. Meth. Min. Sci.& Geomech.
    Abstr, 25 (1988) 171-182.
    [7]. E. L. Post, “ Generalized differentiation.” Trans.
    Amer. Meth. Soc., 32 (1960) 723-781
    [8]. G. Apada and L. Boschi, ” Using the Post-widens
    formula to compute the Earth’s viscoelastic Love
    numbers.” Geophys. J. Int, 166(2006)309-326.
    [9]. H. Dubner and J. Abate, J.Assoe. Comput. Mach., 15
    (1968) 92.
    [10]. H.Dubner, Math. Comput., 58 (1992) 729.
    [11]. H. Stehfest, Comm. Acm., 13 (1970) 47.
    [12]. H.S. Chohan, R.S. Sandhu and W.E. Wolfe, ”A semi
    -discrete procedure for dynamic response analysis
    of saturated soils.” Int. J. Numer. Analyt. Meth.
    Geomech., 15 (1991) 471-496.
    [13]. J. Abate and H. Dubner, SIAM J. Numer.Anal., 5
    (1968)102
    [14]. J.R. Booker. And J.C. Small, "A method of
    computing the consolidation behavior of layered
    soils using direct numerical inversion of laplace
    transform,” Int. J. Numer. Analyt. Meth. Geomech.,
    11 (1987) 363-380
    [15]. R. A. Schapery, ” approximate methods of transform
    inversion for viscoelast -ic stress analysis”
    Proc.4th.U.S. Nat.Congress.
    [16]. S.L. Chen, L.M. Zhang and L.Z Chen,“ Consolidation
    of a finite transverse -ly isdropic soil layer on a
    rough impervious base.” Journal of Engrg. Mech.
    ASCE, 131 (2005) 1279-1290.
    [17]. R.K.N.O. Rajapakse and T. Senjuntichai,” An direct
    boundary integral equation method for
    poroelasticity."Int. J. Numer. Analyt. Meth.
    Geomech., 19 (1995) 587-614
    [18]. S. Sykore, V. Bortollotti and P. Fautazzini,
    “PERFIDI: parametrically enabled relaxation filters
    winth double and multiple inversion.” Magnetic
    Resonance Imaging 25(2007)529-532
    [19]. T. Senjuntichai and R. K. N. D. Rajapakse, “
    Transient response of a circular cavity in a
    poroelastic medium. Int. J. Numer. Analyt. Meth.
    Geomech., 17(1993)357-383

    QR CODE
    :::