| 研究生: |
陳韻婷 Yun-ting Chen |
|---|---|
| 論文名稱: |
製備次微米級均一粒徑之染料球 Preparation of sub-micro-monodisperse dye-doped polystyrene |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 均一粒徑 、染料 、苯乙烯 |
| 外文關鍵詞: | polystyrene, monodisperse, dye |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究中首先以無乳化劑之乳化聚合合成出粒徑範圍為80nm至600nm不同粒徑的聚苯乙烯顆粒,並添加染料於聚苯乙烯顆粒,製備含染料之聚苯乙烯顆粒,實驗所得之樣品以掃瞄式電子顯微鏡(SEM)觀察顆粒狀態,以動態粒徑分析儀(DLS)量測粒徑,以紫外光-可見光光譜儀分析(UV-VIS)其性質。
實驗結果顯示,188nm、210nm及280nm的聚苯乙烯顆粒,經高溫自組裝排列後,在UV-VIS光譜上,可分別在450.7nm、508.0nm及683.0nm得到一反射峰。而添加了黑色染料所製備出之均一粒徑的含染料聚苯乙烯顆粒(DDPM),在自組裝排列完成後,也會產生本身粒徑對映的結構性色彩,且顏色有變鮮明的狀態。
另外,研究中以溶劑導入和共聚合之溶脹兩種不同的方式添加染料於聚苯乙烯顆粒,發現到以溶劑導入染料的方式,粒徑較易控制,均一度也較佳,並且粒徑之Cv(%)值小於3%。不過以結構上來說,共聚合之溶脹方式可以得到含有交聯性質的聚苯乙烯染料顆粒。
In this work, various sizes of monodisperse polystyrene particles (10 wt%,80~600nm) were prepared in the presence of sodium, p-styrenesulfonate (NaSS, 2.0~0wt% based on styrene) and styrene. Then, the dye-containing polymer beads were prepared by introducing the different concentration of dye and solvent or styrene and divinylbenzen in polystyrene particle latex, respectively. The characteristics of self-assemble PS microspheres were observed by SEM, DLS, and ultraviolet-visible spectrophotometer. The results showed that with increasing the concentration of NaSS, the size of polystyrene was
decreased from 600nm to 80 nm.
Highly monodisperse dye-containing polymer beads were prepared by introducing dye and solvent when the dye concentration was lower than 1.0wt% (based on polymer) and by introducing dye and monomers when the dye concentration was lower than 0.05wt% (based on polymer), respectively. But the particle diameter with crosslinked structure was increased to 1.3 times when dye-containing polymer beads prepared by
introducing dye and monomers.
The wavelength of peaks in the reflective spectrum on the set of (111) planes in the face-centered cubic package of self-assembled dye-containing polymer beads with 188, 210, and 280 nm diameters were 450.7, 508.0, and 683.0 nm, respectively. In addition, the more vivid blue, green and red colors were observed when the more dye in those dye-containing polymer beads, respectively. These phenomena were also observed by SEM and photo image of above dye-containing polymer
beads.
1. J. L. Ou, J. K. Yang, H. Chen, European Polymer Journa. 2001, 37, 789-799.
2. 楊嘉崑 ”均一粒徑聚苯乙烯微粒子之合成研究” 國立中央大學化學工程學系碩士論文(1997)
3. 呂誌原 ”溶脹法製備微米級均一粒徑高分子微粒子之研究” 國立中央大學化學工程學系碩士論文(1998)
4. 歐進祿 ”均一粒徑無乳化劑次微米粒子之合成及種子溶脹製備均一粒徑微米級之緻密或交聯結構粒子” 國立中央大學化學工程學系博士論文(2000)
5. T.R. Aslamazova, Progress in Organic Coatings, 1995, 25, 109-167.
6. X.J. Xu, K.S. Siow, M. K. Wong, L.M. Gan, J. Polym. Sci. Part A: Polym Chem. 2001, 39, 1634-1645.
7. J. Xu, P. Li, C. Wu, J. Polym. Sci. Part A: Polym Chem..1999, 37, 2069-2074.
8. S.Gu, H.Akama, D.Nagao, Y. Kobayashi, M.Konno, Langmuir, 2004, 20, 7948-7951.
9. S. Gu, S. Inukai, M. Konno, J. Chem. Eng. Jpn, 2002, 35, 977.
10. S. Gu, S. Inukai, M. Konno, J. Chem. Eng. Jpn, 2003, 36, 1231.
11. N. S. Sanjani, M.S. Dehghan, N. Naderi, A. Ranji, J. Appl. Polym. Sci, 2004, 94, 1898-1904.
12. D. Nagao, N. Anzai, Y. Kobayashi, S. Gu, M. Konno, J. Colloid Interface Sci, 2006, 298, 232-237.
13. D. Zou, L. Sun, J. J. Aklonis, R. Salovey, J. Polym. Sci. Part A: Polym Chem, 1992, 30, 1463-1475.
14. S. E. Shim, Y. J. Cha, J. M. Byun, S. Choe, J. Appl. Polym. Sci, 1999, 71, 2259-2269.
15. J. W. Kim, K. D. Suh, Polymer, 2000, 41, 6181-6188.
16. K. Kang, C. Kan, Y. Du, D. Liu, J. Colloid Interface Sci, 2006, 297, 505-512.
17. F. Bai, X. Yang, W. Huang, J. Appl. Polym. Sci, 2006, 100, 1776-1784.
18. U. Jeong, Y. Wang, M. Ibisate, Y. Xia, Adv. Func. Mater, 2005, 15, 1907-1921.
19. Y. Xia, B. Gates, Z. Y. Li, Adv. Mater, 2000, 12, 693-713.
20. Y. Xia, B. Gates, Z. Y. Li, Adv. Mater, 2001, 13, 409-413.
21. 鐘儀文 ”以膠體製程製備光子晶體及其性質之探討” 國立成功大學材料科學及工程學系博士論文(2006)
22. P. Ni, P. Dong, B. Cheng, X. Li, D. Zhang, Adv. Mater, 2001, 13, 437-441.
23. B. H. Juarze, E. P. Lidon, E. C. Martinez, Photonic Crystal Materials and Nanostructures, 2004, 5450, 14-22.
24. S. Kinoshita, S. Yoshioka, Chem. Phys. Chem, 2005, 6, 1442 – 1459.
25. P. Jiang, J. F. Bertone, K. S. Hwang, V. L. Colvin, Chem. Mater,
1999, 11,2132-2140.
26. L. V. Woodcock, Nature, 1997, 388, 235.
27. L. V. Woodcock, Nature, 1997, 385, 141.
28. H. Mıguez, F. Meseguer, C. Lopez, A. Mifsud, J. S. Moya, L. Vazquez, Langmuir, 1997, 13, 6009-6011.
29. H. Wu, V. R. Thalladi, S. Whitesides, G. M. Whitesides, J. Am. Chem. Soc, 2002, 124, 14495-14502.
30. H. Cong, W. Cao, Langmuir, 2003, 19, 8177-8181.
31. G. N. Waterhouse, M. R. Waterland, Polyhedron, 2007, 26, 356-368.
32. Z. Z. Gu, S. Hayami, S. Kubo, Q. B. Meng, Y. Einaga, D. A. Tryk,
A. Fujishima, O. Sato, J. Am. Chem. Soc, 2001, 123, 175-176.
33. M. Muller, R. Zentel, T. Maka, S. G. Romanov, C. M. S. Torres, Chem. Mater, 2000, 12, 2508-2512.
34. Y.H. Ye, F. LeBlanc, A. Hache, V.V. Truong, Appl. Phys. Lett, 2001, 78, 52-54.
35. H. Miguez, F. Meseguer, C. Lopez, A. Blanco, J. S. Moya,
J. Requena, A. Mifsud, V. Fornes, Adv. Mater, 1998, 10, 480-483.
36. Z. Zhou, X. S. Zhao, Langmuir, 2005, 21, 4717-4723.
37. B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater, 1999, 11, 795-805
38. J. D. Joannopoulos, Nature, 2001, 414, 251.
39. S. H. Im, O. O. Park, Langmuir, 2002, 18, 9642-9646.
40. Y. L, S. W, J. W. Lee, N. A. Kotov, Chem. Mater, 2005, 17, 4918-4924
41. Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem. Int. Ed,. 2003, 42, 894-897.
42. H. Fudouzi, Photonic Crystals and Photonic Crystal Fibers for Sensing Applications, 2005, 6005, 600506-1~600506-9.
43. Z. Z. Gu, S. Kubo, A. Fujishima, O. Sato, Appl. Phys, 2002, 74, 127–129.
44. Y. Yin, Y. Lu, B. Gates, Y. Xia, J. Am. Chem. Soc, 2001, 123, 8718-8729.
45. 李世揚 “微米級單分怖聚苯乙烯螢光微珠” CHEMSTRY(THE CHINESE CHEM. SOC., TAIPEI), 2006, 64, 313-318.
46. R. Arshady, Biomalerials, 1993, 14, 5-15.
47. M. Bradley, M. Ashokkumar, F. Grieser, J. Am. Chem. Soc, 2003,125, 525-529.
48. M. Z. Yates, E. R. Birnbaum, T. M. McCleskey, Langmuir, 2000, 16, 4757-4760.
49. H. Liu, M. Z. Yates, Langmuir, 2002, 18, 6066-6070.
50. H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb,
U. Wiesner, Nano Latters, 2005, 5, 113-117.
51. T. Maka, S.G. Romanov, M. MuÈller, R. Zentel, C.M. Sotomayor Torres, Phys. Stat. Sol, 1999, 215, 307-312.
52. Y. Huang, Y. Zhou, S. T. Wu, Appl. Phys Lett, 2006, 88, 1-4.
53.. J.S. Song, F. Tronc, M. A. Winnik, Polymer, 2006, 47, 817-825.
54. D. G. Yu, J. H. An, J. Y. Bae, D. J. Jung, S. Kim, S. D. Ahn, S. Y. Kang, K. S. Suh, Chem. Mate, 2004, 16, 4693-4698.
55. M. H. J. Oh, D. J. Gentleman, G. D. Scholes, Phys. Chem. Chem. Phys, 2006, 8, 5079-5085.
56. C. S. Chern, T. J. Chen, Y. C. Liou, Polymer, 1998, 36, 3767-3777.
57. H. Hu, R. G. Larson, Langmuir, 2004, 20, 7436-7443.
58. F. Tronc, M. Li, J. LU, M. A. Winnik, B. L. Kaul, J. C. Graciet,
J. Polym. Sci. Part A: Polym Chem, 2003, 41, 766-778.