跳到主要內容

簡易檢索 / 詳目顯示

研究生: 阮達和
Nguyen Dac Nhut
論文名稱: The Effect of Applying Solar Photovoltaic for Building Energy Conservation: A Case Study in Taiwan
The Effect of Applying Solar Photovoltaic for Building Energy Conservation: A Case Study in Taiwan
指導教授: 黃榮堯
Rong-yau Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木系營建管理碩士班
Master's Program in Construction Management, Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 118
中文關鍵詞: 太陽光電系統能源消耗電腦資訊模型成本回收期
外文關鍵詞: Photovoltaic system, Energy Conservation, Payback time, BIM
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時至今日,氣候變遷與資源消耗議題儼然成為世界各國關注之重點。建築及相關營

    建產業的高耗能行為已對環境造成嚴重衝擊。各國開始探討發展再生能源之可能與機會,

    其中太陽能是公認的低汙染能源來源,而太陽光電系統(Photovoltaic, PV)之使用將是降低

    環境衝擊的解決方案之一。雖然太陽光電系統具備發展潛力,惟其初期建置之成本過高,

    反而造成推行之窒礙。針對提高太陽光電系統之使用率,政府單位與相關投資人必須了解

    太陽光電系統所帶來之效益,特別是溫室氣體(greenhouse gases, GHG)及整體成本等。為

    了優化與分析太陽光電系統之效能與產出,本研究係利用電腦資訊模型(building

    information modeling, BIM)模擬太陽光電系統於建築物屋頂之可能,並探討太陽光電系統

    設置於屋頂之傾斜角度、成本回收期與二氧化碳(CO2e)等因素。本研究主要研究目的包含

    (1)調查太陽光電系統設置於屋頂之傾斜角度與情境之差異,並分析不同差異對二氧化碳

    減量與投資成本回收期之影響;(2)分析太陽光電系統架設方位之經緯度差異對傾斜角度

    與情境之影響。本研究以國立中央大學圖書館為模擬標的,模擬成果顯示當太陽光電系統

    面向西南方10°且傾斜角度20°時,該建築物之太陽光電系統每年最大可產生181.1MWh之

    電力,相當於節省125噸的二氧化碳,最短投資回收期為19.71年。透過本研究之模擬成果

    發現,當所在國家其經緯度大於或等於10°時,最佳的太陽光電系統傾斜角度等於該地區

    經緯度(之十位數加或減10° (opt-sys range = roundown(, -1) ± 10°);當該國家其經緯度小於

    10°時則加10°(opt-sys range = roundown(, -1) + 10°)。此結果亦顯示,最佳的太陽光電系統接

    收範圍為 opt-sys range = - 20° to 20°。本研究之成果將可提供建築師、相關投資人及政府等

    單位從環境、能源及經濟等面向評估太陽光電系統之效能。


    Nowadays, climate change and resource depletion issues become a major concern

    throughout the world. The building and construction sectors have been identified as one of the

    major contributors to global environmental impact due to their high energy consumption. Taiwan

    has several opportunities to develop it potentially abundant renewable energy sources. Solar

    energy is considered as a less-pollutant renewable energy which could be used in order to deal

    with the environmental impacts issues, and the application of Photovoltaic system (PVs) is one

    of the best solutions. However, the high initial cost is a big barrier for applying Photovoltaic

    (PV) technology, so the governments or investors need to clearly understand the benefit of the

    PV application in terms of greenhouse gases (GHG) reduction and in terms of costs as well. In

    order to optimize the output performance of PVs, the factors which directly affect the efficiency

    of PVs should be considered. This study presents a simulation approach by using building

    information modeling (BIM) tools to investigate solar potential on the building’s rooftop. The

    aim of this study is to investigate the impacts of the tilt angle and orientation, and latitude of

    rooftop PVs on generated electricity, CO2 emission (CO2e) savings, and payback time in terms of

    cost. The result show that the PVs on the rooftop of the main library in National Central

    University (NCU) can generate the most annual electricity (181.1MWh) and save the most

    annual CO2e (125 Metric tons) when PVs is installed at a tilt angle of 20° and oriented at the

    rotated angle of 10° towards the West from the South, and the minimum payback time is 19.71

    years. It is concluded that for the countries with the latitude is greater than and equal to 10°, the

    optimum tilt angle range of photovoltaic system is equal to latitude ( of the site rounded down

    to the nearest ten and then minus and plus 10° (opt-sys range = roundown(, -1) ± 10°) and for the

    countries with the latitude is less than 10°, (opt-sys range = roundown(, -1) + 10°). The results

    show that the optimum orientation range where the photovoltaic system receives the most

    insolation is opt-sys range = - 20° 20°. The findings provide technical information for architects,

    investors, etc., to assess PVs which could contribute to the environmental, energy, and economic

    aspects.

    TABLE OF CONTENTS ABSTRACT .............................................................................................................................................. i ACKNOWLEDGEMENTS .................................................................................................................... iii TABLE OF CONTENTS ........................................................................................................................ iv LIST OF TABLES ................................................................................................................................ viii CHAPTER 1: INTRODUCTION ............................................................................................................1 1.1 Research Background ...............................................................................................................1 1.2 Problem statement and objective of the research .....................................................................3 1.3 The scope of research and limitation ........................................................................................4 1.4 Methodology ............................................................................................................................4 1.5 Thesis outline ...........................................................................................................................7 CHAPTER 2: LITERATURE REVIEW .................................................................................................9 2.1 The development, types, status of solar photovoltaic applications ..........................................9 2.2 Previous studies ..................................................................................................................... 13 2.2.1 Solar spectrum, temperature variations, clearness index, and air mass impact ............ 14 2.2.2 Tilt angle and orientation of PVs impact ....................................................................... 15 2.2.3 Shading of the surrounding environment impact .......................................................... 16 2.3 Building Information Modeling (BIM) ................................................................................. 17 2.4 Tool for running thermal analysis of the whole building and solar exposure of photovoltaic system ............................................................................................................................................... 18 CHAPTER 3: METHODOLOGY ........................................................................................................ 19 3.1 Case study ............................................................................................................................. 19 3.1.1 General description ....................................................................................................... 19 3.1.2 Materials specifications ................................................................................................. 20 3.1.3 Electricity bill and operation schedule .......................................................................... 21 3.1.4 Weather data .................................................................................................................. 21 3.1.4.1 Temperature .............................................................................................................. 21 3.1.4.2 Rainfall ...................................................................................................................... 22 3.1.4.3 Wind, solar radiation, other data ............................................................................... 23 3.2 Building up model in Autodesk Revit Architecture 2013 ..................................................... 24 3.3 Assumption and energy consumption analysis simulation in Ecotect ................................... 26 3.4 Model validation ................................................................................................................... 26 3.5 Photovoltaic system design ................................................................................................... 28 3.6 Parameter input for solar exposure analysis in Ecotect ......................................................... 31 3.6.1 Weather pattern ............................................................................................................. 31 v 3.6.2 Tilt angle of PVs ........................................................................................................... 31 3.6.3 Orientation of PVs ......................................................................................................... 32 3.7 Electricity price, assumption for PVs .................................................................................... 33 3.7.1 Electricity price ............................................................................................................. 33 3.7.2 Assumption for PVs ...................................................................................................... 33 3.7.2.1 Efficiency .................................................................................................................. 33 3.7.2.2 Price ........................................................................................................................... 34 3.8 Electricity generated by PVs, CO2e savings, and payback time calculation ........................ 34 CHAPTER 4: RESULTS AND DISCUSSIONS .................................................................................. 36 4.1 The effect of PVs on electricity generated, CO2e savings, and payback time ...................... 36 4.1.1 Tilt angle of PVs ........................................................................................................... 36 4.1.2 Orientation of PVs ......................................................................................................... 38 4.2 The impacts of latitudes of locations on the optimum tilt angle range and its orientation range of PVs and the first array ......................................................................................................... 40 4.2.1 Countries in the Northern hemisphere ........................................................................... 40 4.2.1.1 Belize ......................................................................................................................... 40 4.2.1.2 France ........................................................................................................................ 41 4.2.1.3 Germany .................................................................................................................... 43 4.2.1.4 Honduras ................................................................................................................... 45 4.2.1.5 Japan .......................................................................................................................... 46 4.2.1.6 Serbia ......................................................................................................................... 48 4.2.1.7 Singapore ................................................................................................................... 50 4.2.1.8 Taiwan ....................................................................................................................... 52 4.2.1.9 The United States of America (USA) ........................................................................ 52 4.2.1.10 Viet Nam ............................................................................................................... 54 4.2.2 Countries in the Southern hemisphere ........................................................................... 56 4.2.2.1 Argentina ................................................................................................................... 56 4.2.2.2 Australia .................................................................................................................... 58 4.2.2.3 Bolivia ....................................................................................................................... 60 4.2.2.4 Brazil ......................................................................................................................... 62 4.2.2.5 Chile .......................................................................................................................... 64 4.2.2.6 New Zealand ............................................................................................................. 66 4.2.2.7 Paraguay .................................................................................................................... 68 4.2.2.8 Peru ........................................................................................................................... 70 4.2.2.9 South Africa .............................................................................................................. 72 4.2.2.10 Uruguay ................................................................................................................. 74 vi 4.3 Findings ................................................................................................................................. 78 4.3.1 The effect of PVs on electricity generated, CO2e savings, and payback time .............. 78 4.3.2 The impacts of latitudes of locations on the optimum tilt angle range and its orientation range of PVs and the first array ..................................................................................................... 78 CHAPTER 5: CONCLUSION AND FUTURE RESEARCH .............................................................. 80 5.1 Conclusion ............................................................................................................................. 80 5.2 Future Research ..................................................................................................................... 80 References ............................................................................................................................................. 81 Appendix ............................................................................................................................................... 84

    References
    1. Life-cycle environmental effects of an office building J Infrastruct Syst 2003:157–66, 9_4.
    2. Zabalza Bribia´n I, Aranda Uso´n A, Scarpellini S. Life cycle assessment in buildings: state-of-the-art and simplified LCA methodology as a complement for building certification. Build Environ 2009; 12:2510–20.
    3. Climate change. Synthesis report, intergovernmental panel of climate change. See, http://www.ipcc.ch/ipccreports/ar4-syr.htm; 2007.
    4. Bureau of Energy Ministry of Economic Affair, Energy of Statistical Annual Report http://web3.moeaboe.gov.tw/ECW/english/content/ContentLink.aspx?menu_id=1540.
    5. Natural Environment, http://unfccc.epa.gov.tw/unfccc/english/04_our_efforts/02_efforts.html
    6. Pérez-Lombard, L., J. Ortiz, and C. Pout, A review on buildings energy consumption information. Energy and Buildings, 2008. 40(3): p. 394-398.
    7. Chen, F., et al., Assessment of renewable energy reserves in Taiwan. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 2511-2528.
    8. 05/01361 Overview of environmental impacts, prospects and policies for renewable energy in Taiwan. Fuel and Energy Abstracts, 2005. 46(3): p. 199.
    9. Raugei, M., S. Bargigli, and S. Ulgiati, Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy, 2007. 32(8): p. 1310-1318.
    10. Solarbuzz™. MARKETBUZZ™ 2008: annual world solar photovoltaic industry report; 2008.<http://www.solarbuzz.com/Marketbuzz2008-intro.htm>.
    11. Solar power remains unaffordable for majority.
    See http://www.sunday-guardian.com/investigation/solar-power-remains-unaffordable-for- majority.
    12. Burtraw D, Krupnick A. The true cost of electric power. Renewable Energy Policy Network for the 21st Century (REN21) 2012.
    13. Lin, J.-X., et al., Policy target, feed-in tariff, and technological progress of PV in Taiwan. Renewable and Sustainable Energy Reviews, 2014. 39(0): p. 628-639.
    14. Skeiker, K., Optimum tilt angle and orientation for solar collectors in Syria. Energy Conversion and Management, 2009. 50(9): p. 2439-2448.
    15. Jaeger-Waldau J. PV Status Report 2007—Research, solar cell production and market Implementation of photovoltaics. European Commission Joint Research Centre Technical Notes. EUR 23018EN—2007. See also: http://sunbird.jrc.it/refsys/pdf/PV_StatusReport_2007.pdfS,2007.
    16. European Photovoltaic Industry Association/Greenpeace, 2008. Solar Generation V—Solar electricity for over one billion people and two million jobs by 2020. The Netherlands/Belgium. See also:/http://www.epia.org/S.
    17. Raugei, M. and P. Frankl, Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks. Energy, 2009. 34(3): p. 392-399.
    18. BOE. Bureau of Energy, Ministry of Economic Affairs (BOE); 2013 available at: 〈http://web3.moeaboe.gov.tw/〉.
    19. Nagae, S., et al., Evaluation of the impact of solar spectrum and temperature variations on output power of silicon-based photovoltaic modules. Solar Energy Materials and Solar Cells, 2006. 90(20): p. 3568-3575.
    82
    20. Minemoto, T., S. Nagae, and H. Takakura, Impact of spectral irradiance distribution and temperature on the outdoor performance of amorphous Si photovoltaic modules. Solar Energy Materials and Solar Cells, 2007. 91(10): p. 919-923.
    21. Nakada, Y., et al., Influence of clearness index and air mass on sunlight and outdoor performance of photovoltaic modules. Current Applied Physics, 2010. 10(2, Supplement): p. S261-S264.
    22. Sirisamphanwong, C. and N. Ketjoy, Impact of spectral irradiance distribution on the outdoor performance of photovoltaic system under Thai climatic conditions. Renewable Energy, 2012. 38(1): p. 69-74.
    23. Adaramola, M.S. and E.E.T. Vågnes, Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions. Energy Conversion and Management, 2015. 90(0): p. 458-465.
    24. Lewis, G., Optimum tilt of a solar collector. Solar & Wind Technology, 1987. 4(3): p. 407-410.
    25. Shariah, A., M.A. Al-Akhras, and I.A. Al-Omari, Optimizing the tilt angle of solar collectors. Renewable Energy, 2002. 26(4): p. 587-598.
    26. Kacira, M., et al., Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renewable Energy, 2004. 29(8): p. 1265-1275.
    27. M. Jamil Ahmad and G.N. Tiwari, Optimization of Tilt Angle for Solar Collector to Receive Maximum Radiation, 2009, 2, p.19-24.
    28. Moghadam, H., F.F. Tabrizi, and A.Z. Sharak, Optimization of solar flat collector inclination. Desalination, 2011. 265(1–3): p. 107-111.
    29. Pavlović, T., Pavlović, Z., Pantić, L., & Kostić, L. J. (2010). Determining Optimum Tilt Angles and Orientations of Photovoltaic Panels in Niš, Serbia. Contemporary Materials I, 2.
    30. Chang, Y.-P., Optimal the tilt angles for photovoltaic modules in Taiwan. International Journal of Electrical Power & Energy Systems, 2010. 32(9): p. 956-964.
    31. O. Asowata, J. Swart and C. Pienaar, "Optimum Tilt Angles for Photovoltaic Panels during Winter Months in the Vaal Triangle, South Africa," Smart Grid and Renewable Energy, Vol. 3 No. 2, 2012, pp. 119-125.
    32. Stanciu, C. and D. Stanciu, Optimum tilt angle for flat plate collectors all over the World – A declination dependence formula and comparisons of three solar radiation models. Energy Conversion and Management, 2014. 81(0): p. 133-143.
    33. Levinson, R., et al., Solar access of residential rooftops in four California cities. Solar Energy, 2009. 83(12): p. 2120-2135.
    34. Colucci, A. and M. Horvat, Making Toronto Solar Ready: Proposing Urban Forms for the Integration of Solar Strategies. Energy Procedia, 2012. 30(0): p. 1090-1098.
    35. Schlueter, A. and F. Thesseling, Building information model based energy/exergy performance assessment in early design stages. Automation in Construction, 2009. 18(2): p. 153-163.
    36. Shoubi, M.V., et al., Reducing the operational energy demand in buildings using building information modeling tools and sustainability approaches. Ain Shams Engineering Journal, 2015. 6(1): p. 41-55.
    37. Smith, P., BIM Implementation – Global Strategies. Procedia Engineering, 2014. 85(0): p. 482-492.
    38. Yang, L., B.-J. He, and M. Ye, Application research of ECOTECT in residential estate planning. Energy and Buildings, 2014. 72(0): p. 195-202.
    83
    39. Kanters, J., M. Horvat, and M.-C. Dubois, Tools and methods used by architects for solar design. Energy and Buildings, 2014. 68, Part C(0): p. 721-731.
    40. World Weather Online, see: http://www.worldweatheronline.com/Taoyuan-weather-averages/Tai-Wan/TW.aspx
    41. http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=2_asia_wmo_region_2/country=TWN/cname=Taiwan
    42. Worldwide Solar PV References, see http://www.ingeteam.com/
    43. Bureau of Energy, Ministry of Economic Affairs, http://web3.moeaboe.gov.tw/ECW/english/home/English.aspx
    44. Solar Facts and Advice, see: http://www.solar-facts-and-advice.com/kWh.html
    45. U.S. Environmental Protection Agency, see: http://www.epa.gov/cleanenergy/energy-resources/calculator.html

    QR CODE
    :::