跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林政寬
Cheng-Kuan Lin
論文名稱: n 階置換Cayley 圖之研究
指導教授: 黃華民
Hua-Min Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 90
語文別: 中文
論文頁數: 87
中文關鍵詞: Cayley
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個有漢米頓圈的圖,代表圖中任意兩點都有一對內點互斥且通過所有頂點的路徑。
    根據Menger′s 定理,在n連通圖中,任意的兩點p, q之間存在著n條內點互斥的路徑。若此n條內點互斥的路徑包含著圖中所有的頂點,則稱p, q是n覆蓋連通。
    本論文將以n規則Cayley圖為例來討論覆蓋連通性及其相關特性。


    none

    表次 ..................... 2 圖次 ................... 3 摘要 .............................. 4 前言 ........................... 5 第一章 基本定義 ..... 6 1.1 基本定義 1.2 Cayley圖 1.3 立方圖 1.4 Transposition Tree圖 1.5 Pancake圖 第二章 有遞迴結構Cayley圖上的漢米頓相關性質 .................. 16 2.1 漢米頓連接 2.2漢米頓圈 第三章 k-覆蓋連通性質 .............. 24 3.1 Pancake圖的k-覆蓋連通性質 3.2 立方圖的k-偶覆蓋連通性質 3.3 星圖的k-偶覆蓋連通性質 3.4 泡沫圖的k-偶覆蓋連通性質 附錄........................ 60 參考文獻................ 69

    [1] S.B. Akers and B. Krishnamurthy, A Group Treoretic Model dor Symmectric Interconnection Networks, IEEE Transaction on Computer, Vol. c-38, No. 4, April 1989, pp. 555-566.
    [2] Friedhelm Meyer auf der Heide and Berthold VÖcking , Short paths routing in arbitrary networks, (1998), 12-13.
    [3] Ore, Hamiltonian connected graphs, J. Math. Pures. Appl. 55, (1961), 315-321.
    [4] Marissa P. Justan, Computer Verification of the Diameter of the n-dimensional Pancake Network.
    [5] Douglas B. West, Introduction to Graph Theory, Prentice Hall, 1996.
    [6] K. Menger, Zur allgemeinen Kurventheroie, Fund. Math., 10, 1927, 95-115.
    [7] Michael Albert, R. E. L. Aldred and Derek Holton, On 3*-connected graphs, Australasian Journal of Combinatorics, 24(2001), 193-207.
    [8] 雷偉明, Cayley 圖的直徑與寬直徑的研究, 中央大學數學研究所碩士論文, 1996.
    [9] 徐嘉陽, 特殊Cayley 圖的寬距, 中央大學數學研究所碩士論文, 1994.
    [10] Chun-Nan Hung, Hong-Chun Hsu, Kao-Yung Liang, and Lih-Hing Hsu, Rong Embedding in Faulty Pancake Graph.
    [11] Chang-Hsing Tsai, Jimmy J.M. Tan, Tyne Liang, and Lih-Hsing Hsu, Fault – Tolerant Hamiltonian Laceablility of Hypercubes.
    [12] Tseng-Kuei Li, Jimmy J. M. Tan, and Lih-Hsing Hsu, Hamiltonian lacebiblity on edge fault star graph.
    [13] Mohammad H. Heydari, and I. Hal Sudborough, On the Diameter of the Pancake Network, Journal of Algorithms, 25 (1997), 67-94.
    [14] D. S. Cohen, and M. Blum, Improved bounds for sroting pancakes under a conjucture, Manuscript, Computer Secience Division, University of California, Berkeley, 1992.
    [15] M. R. Carey, D. S. Johnson, and S. Lin, Amer. Math. Monthly 84 (1977), 296.
    [16] W. H. Gates, and C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27 (1979), 47-57.
    [17] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
    [18] H. Dweighter, Amer. Math. Monthly 89 (1975), 1010.
    [19] S. Lakshmivarahan, J. Jwo, and S. K. Dhall, Symmetry in interconnection networks based on Cayley graphs of permutation groups: a survey, Parallel Comput., 19:361-407, 1993.
    [20] Thomas W. Hungerfore, Abstract Algebra, Saunders College Publishing, 1997.
    [21] F. Harary and M. Lewinter, Hypercubes and other recursively defined hamilton laceable graphs, Congressus Numerantium 60, 1987, pp. 81-84.
    [22] S. Y. Hsieh, G. H. Chen and C. W. Ho, Hamiltonian-laceability of star graphs, NETWORKS, vol. 36,2000, pp. 225-232.
    [23] Dirac G. A., Some theorems on abstract graphs, Proc. Lobs. Math. Soc. 2, 1952, 69-81.
    [24] H. Bass, J. F. C. Kingman, F. Smithies, J.A. Todd,and C. T. C. Wall, Algebraic Graph Theory, Norman Biggs, (1974).
    [25] G. Simmons, Alomost all n-dimensional rectangular lattices are Hamiltonian laceable, Congressus Numerantiun 21, 1978, pp. 103-108.

    QR CODE
    :::