| 研究生: |
張鴻聖 Hung-sheng Chang |
|---|---|
| 論文名稱: |
相移式干涉儀之系統校正及量測軟體的撰寫 The Calibration of Phase-Shifting Interferometer and the Application of Asphere Testing |
| 指導教授: |
李正中
Cheng-chung Lee 梁肇文 Chao-wen Liang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 標準鏡校正 、壓電材料校正 、相移式干涉儀 |
| 外文關鍵詞: | phase-shifting interferometry, piezoelectric transducers, reference optics |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光學量測是目前光電科技中重要的一環,為達到精密的量測,目前大多是以光學干涉的方式,其中,相移式干涉術被廣泛的應用在各種精密光學量測當中。
相移式干涉術的原理是利用參考光束與待測光束的光程差形成干涉,接著一連串的改變參考光束的相位並記錄干涉條紋的變化,最後根據每次相位變化所記錄的干涉圖形,推得待測光束的相位。現今所發展出來的相位還原法,是根據不同的相位移與不同次數的相位改變而使用的,例如一般常使用的四步相移演算法、三步相移演算法、最小平方演算法或是Hariharan 演算法。
本論文提出了相移式干涉儀之系統校正的方法,針對相移制動器與標準鏡做校正,以減少量測時所產生的誤差。並對各種相位還原的演算法做分析與模擬,且開發一套相移式干涉儀的量測軟體,從校正系統到實際量測。最後校正前後的比較,校正後量測的結果可以達到小於五百分之一個波長的量測誤差。
Phase-shifting interferometers(PSI)are widely used in many optical testing applications, for the phase-shifting interferometry has high accuracy and rapid measurements. Phase-shifting interferometry electronically records a series of interferograms while the reference phase of the interferometer is changed. The wavefront phase is encoded in the variations of the intensity pattern of the recorded interferograms, and a point-by-point calculation recovers the phase.
But there are numerous sources of error that can affect the accuracy of phase measurement determined by the phase-shifting interferometer. The error includes those attributable to the phase shifter, the reference surface roughness, the laser source, the detector, and the environment.
In this paper, we have discussed numerous PSI algorithms and the sources of error. Furthermore, we will propose some methods to calibrate the PSI system.
〔1〕 D. K. Cheng, Field and Wave Electromagnetics, Second Edition, pp. 321-335, Addison-Wesley Publishing Company, Massachusetts, 1989.
〔2〕 E. Hecht, The Superposition of Waves, Chap. 7 in Optics, Fourth Edition, Addison-Wesley Publishing Company, Massachusetts, 2002.
〔3〕 E. Hecht, The Propagation of Light, Chap. 4 in Optics, Fourth Edition, Addison-Wesley Publishing Company, Massachusetts, 2002.
〔4〕 M. V. Mantravadi and D. Malacara, Newton, Fizeau, and Haidinger Interferometers, Chap. 1 in Optical Shop Testing, Third Edition, Wiley-Interscience, New York, 1992.
〔5〕 D. Malacara, Twyman-Green Interferometer, Chap. 2 in Optical Shop Testing, Third Edition, Wiley-Interscience, New York, 1992.
〔6〕 H. Schreiber and J. H. Bruning, Phase Shifting Interferometry, Chap. 14 in Optical Shop Testing, Third Edition, Wiley-Interscience, New York, 1992.
〔7〕 J. C. Wyant, C. L. Koliopoulos, B. Bhushan and O. E. George, An Optical Profilometer for Surface Characterization of Magnetic Media, ASLE Trans. 27, 101, 1984.
〔8〕 J. H. Bruning and D. R. Herriott, A Versatile Laser Interferometer, Appl. Opt., 9,2180, 1970.
〔9〕 J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White and D. J. Brangaccio, Dagital Wavefront Measuring Interferometer for Testing Optical Surfaces, Lenses, Appl. Opt., 13, 2693, 1974.
〔10〕 J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk and K. Merkel, Dagital Wavefront Measuring Interferometry : Some Systematic Error Sources, Appl. Opt., 22, 3421, 1983.
〔11〕 J. Schmit and K. Creath, Extender Averaging Technique for Derivation of Error-Compensating Algorithms in Phase-shifting Interferometry, Appl. Opt., 34, 3610, 1995.
〔12〕 J. Schmit and K. Creath, Window Function Influence on Phase Error in Phase-Shifting Algorithms, Appl. Opt., 35, 5642-5649, 1996.
〔13〕 K. Itoh, Analysis of the Phase Unwrapping Problem, Appl. Opt., 21, 2470, 1982.
〔14〕 C. L. Koliopoulos, Interferometer Optical Phase Measurement, Ph. D. Dissertation, University Arizona, Tucson, 1981.
〔15〕 C. P. Brophy, Effect of Intensity Error Corrrlation on the Computed Phase of Phase-Shifting Interferometry, JOSA A, 7, 537, 1990.
〔16〕 M. Pantazis, M. John, Geometrical Optics and Optical Design, Oxford Univ Pr, 1996.
〔17〕 U. Griesmann, Q. Wang, J. Soons, and R. Carakos, A Simple Ball Averager for Reference Sphere Calibrations, SPIE Vol. 5869, 58690S, 2005.
〔18〕 V. N. Mahajan, Zernike Polynomials and Wavefront Fitting, Chap. 13 in Optical Shop Testing, Third Edition, Wiley-Interscience, New York, 1992.