| 研究生: |
劉丞祖 CHENG-ZU LIU |
|---|---|
| 論文名稱: |
結合鋁奈米結構與氮化銦鎵基板之表面增強拉曼散射在 β-carotene 溶液檢測之研究 Effect of Aluminum Thickness and Annealing on InGaN-based SERS Substrates for β-carotene Detection |
| 指導教授: |
賴昆佑
KUN-YOU LAI |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 表面增強拉曼散射 、氮化銦鎵 、β-胡蘿蔔素 |
| 外文關鍵詞: | Surface-Enhanced Raman Scattering, Indium Gallium Nitride, β-Carotene |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中,我們以氮化銦鎵(InGaN)奈米量子井作為基板,並覆蓋鋁(Al)奈米結構之表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)晶片,以提升對 β-carotene 乙醇溶液之偵測靈敏度。研究中採用電子束蒸鍍技術(E-gun)於 InGaN 基板上沉積不同厚度(30、35、40 nm)的鋁膜,並以快速熱退火(Rapid Thermal Annealing, RTA)於不同溫度(275°C、300°C、325°C、350°C)進行處理,以調控鋁奈米顆粒的形成與分佈。製程完成後,在各樣品表面滴加濃度為 100 µM 的 β-carotene 乙醇溶液5滴,並以波長 532 nm 的雷射拉曼光譜儀進行量測。
透過實驗觀察,不同鋁厚度與退火溫度對鋁奈米結構之尺寸、密度與均勻性具有顯著影響,進而導致 SERS 增強效應表現出不同的拉曼訊號強度。本研究結果顯示,適當控制鋁膜厚度與退火條件可優化表面奈米結構,有效提升 β-carotene 分子的拉曼訊號強度。此一研究提供未來在優化以鋁(Al)奈米結構之表面增強拉曼散射晶片的製程條件。
In this study, a Surface-Enhanced Raman Scattering (SERS) chip was developed using indium gallium nitride (InGaN) quantum wells as the substrate and aluminum (Al) nanostructures as the plasmonic layer to enhance the detection sensitivity of β-carotene in ethanol solution. Aluminum films with varying thicknesses (30, 35, and 40 nm) were deposited on InGaN substrates via electron beam evaporation (E-gun), followed by rapid thermal annealing (RTA) at different temperatures (275°C, 300°C, 325°C, and 350°C) to control the formation and distribution of Al nanoparticles.
After the fabrication process, five drops of 100 µM β-carotene ethanol solution were applied to each substrate, and the Raman spectra were measured using a laser Raman spectrometer with an excitation wavelength of 532 nm. Experimental observations revealed that both the Al film thickness and annealing temperature significantly influenced the size, density, and uniformity of the Al nanostructures, resulting in varied SERS signal intensities.
The results indicate that optimizing the thickness of the Al layer and annealing conditions can effectively improve the nanostructure morphology and enhance the Raman signal of β-carotene. This study provides valuable insight into the fabrication process of Al-based SERS chips and offers a reference for future optimization of such platforms.
[1] Tsai, T.-Y.; Liu, C.-W.; Hsu, W.-T.; Chang, W.-H.; Lai, K.-Y. Nanostructured InGaN Quantum Wells as a Surface-Enhanced Raman Scattering Substrate with Expanded Hot Spots. ACS Appl. Nano Mater. 4, 274–281 (2021).
[2] Li, J.; Liu, P.; Hu, H.; Ma, W.; Tian, Y.; Xu, H. Controlling the Electron Concentration for Surface-Enhanced Raman Spectroscopy. ACS Photonics 8, 1861–1867 (2021).
[3] Kumamoto, Y.; Taguchi, A.; Sugawara, Y.; Ichimura, T. Resonance Raman Scattering of β-Carotene Solution Excited by Visible Laser Beams into Second Singlet State. J. Electron Spectrosc. Relat. Phenom. 224, 24–28 (2018).
[4] Lin, Y.-W.; Chen, J.-K. Aluminum Nanoparticle Films with an Enhanced Hot-Spot Intensity for High-Efficiency SERS. Opt. Express 28, 9174–9183 (2020).
[5] Yu, Y.; Liang, W.; Liu, X.; Zhang, M.; Zhu, Q.; Duan, G. Fabrication of Au-Decorated Al Nanoconcavities Platform for Augmented SERS. Adv. Mater. Interfaces 10, 2300560 (2023).
[6] Zhang, Y.; Chen, Q.; Lin, H.; Zhao, X.; Li, J.; He, L. Silver Nanorods Wrapped with Ultrathin Al₂O₃ Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability. Anal. Chem. 87, 2543–2550 (2015).
[7] Chang, C. T.; Huang, M. H.; Lin, C. Y.; Yeh, J. H.; Wang, Y. L. Controllable Growth of Al Nanorods for Inexpensive and Degradation-Resistant Surface Enhanced Raman Spectroscopy. arXiv preprint arXiv:1405.1009 (2014).
[8] Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).
[9] Nie, S.; Emory, S. R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 275, 1102–1106 (1997).
[10] Zhang, F.; Proust, J.; Gérard, D.; Martin, J. Reduction of Plasmon Damping in Aluminum Nanoparticles with Rapid Thermal Annealing. J. Phys. Chem. C 121, 7429–7434 (2017).
[11] Malek, K.; Brzózka, A.; Rygula, A.; Sulka, G. D. SERS Imaging of Silver Coated Nanostructured Al and Al₂O₃ Substrates: The Effect of Nanostructure. J. Raman Spectrosc. 45, 281–291 (2014).
[12] Qiu, T.; Wu, X.; Mei, T.; Chu, P. K. Surface plasmon resonance enhanced light emission from metal-coated InGaN/GaN quantum wells. Appl. Phys. Lett. 93, 101109 (2008).
[13] Yang, Y.; He, J.; Yang, X.; Liu, X.; Xu, H.; Li, B. SERS performance of annealed aluminum nanoparticle arrays fabricated by thermal evaporation. J. Nanopart. Res. 20, 324 (2018).
[14] Yeshchenko, O. A.; Dmitruk, I. M.; Alexeenko, A. A.; Dmytruk, A. M. Optical properties and SERS enhancement of Al nanoparticle ensembles fabricated by different annealing regimes. Physica E 42, 1852–1857 (2010).
[15] Chen, M.; Meng, L.; Bai, S.; Wang, J. Plasmonic aluminum nanostructures for biosensing. Nano Today 44, 101468 (2022).
[16] Lu, G.; Wang, Y.; Liu, Y.; Yin, Y. Substrate-enhanced Raman scattering for trace detection of food additives in complex matrices. TrAC Trends in Analytical Chemistry 135, 116156 (2021).
[17] Saito, Y.; Kimura, K. How to design surface-enhanced Raman scattering (SERS) substrates and improve their performance: a review. J. Photochem. Photobiol. C 12, 33–46 (2011).
[18] Lee, S. Y.; Yang, C.; Cheng, C. S.; Lai, K. Y. Low-temperature deposited aluminum nanostructures on GaN for efficient SERS detection. ACS Appl. Mater. Interfaces 12, 48342–48349 (2020).
[19] Yamamoto, Y. S.; Itoh, T. Why and how do the shapes of nanoparticles affect the SERS enhancement? Nanoscale 4, 4143–4150 (2012).
[20] López-Lorente, Á. I.; Mizaikoff, B. Recent advances on the characterization of plasmonic substrates using SERS and SEIRA. Analyst 141, 3085–3111 (2016).