跳到主要內容

簡易檢索 / 詳目顯示

研究生: 歐陽明崴
OuYang, Min-Wei
論文名稱: The analysis of the TASEH CD102 data
指導教授: 余欣珊
Shin-Shan Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 103
中文關鍵詞: 軸子暗物質
外文關鍵詞: TASEH, Haloscope
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣軸子偵測實驗(TASEH)是一個尋找質量為20 μeV 的軸子和類軸
    子粒子的實驗,軸子同時也是暗物質的候選粒子之一,在本實驗中,我們
    使用微波共振腔和低噪放大器檢測強磁場下軸子轉換成光子的信號,本篇
    論文會詳細描述我們是如何設計實驗參數跟分析我們於西元2021年10月至
    11月所取的實驗數據。


    The Taiwan Axion Search Experiment with Haloscope (TASEH) is a haloscope experiment to search for axions and axion-like-particles with a mass of 20 µeV. The axion is a compelling particle candidate for dark matter. In this experiment, we use a microwave cavity and low-noise amplifiers to detect the signal of axion-to-photon conversion under a strong magnetic field.
    This is a thesis about the design of experimental parameters and the analysis of the CD102 data that were collected in October-November 2021.

    1 Introduction 1 1.1 The Axion 1 1.2 Other Axion Experiments 2 1.3 Taiwan Axion Search Experiment with Haloscope 4 1.3.1 Overview 4 1.3.2 Cavity 4 1.3.3 Dilution refrigerator 6 1.3.4 Readout 6 2 Axion signal 9 2.1 Overview 9 2.2 signal 9 2.3 The target signal-to-noise ratio 10 3 Experimental Parameters 13 3.1 Overview 13 3.2 Calibration of the amplification chain 13 3.3 Expected limit 15 3.3.1 Lorentz distribution 15 3.3.2 Step size 16 3.3.3 Scan rate 16 3.3.4 Determination of the parameters 18 4 Data Analysis 21 4.1 Overview 21 4.2 Date format and storage 21 4.3 Analysis step 21 4.3.1 Fast Fourier transform 22 4.3.2 The Savitzky-Golay Filter 23 4.3.3 Rescale the spectrum 26 4.3.4 Combine the spectrum vertically 26 4.3.5 Combine the spectrum horizontally 28 4.3.6 Rescan 29 4.3.7 Set the limit on |gaγγ| 30 4.4 CD096 32 4.4.1 Overview 32 4.4.2 Conclusion 32 4.5 CD099 33 4.5.1 Hemt calibration result 33 4.5.2 Experimental parameters 35 4.5.3 Data taking 36 4.5.4 The study of HEMT response as a function of time 38 4.5.5 Process of analysis 42 4.5.6 Conclusion 44 4.6 CD102 45 4.6.1 Overview 45 4.6.2 Hemt calibration result 45 4.6.3 Experimental parameters 46 4.6.4 Monitor system 49 4.6.5 Data taking 51 4.6.6 Rescan 53 4.6.7 Hemt drift 55 4.6.8 Process of analysis 60 4.6.9 Synthetic axion 62 4.6.10 Set the limit with various way 65 4.6.11 Systematic uncertainties 67 4.6.12 Conclusion 68 5 Conclusion 71 bibliography 73

    [1] R. D. Peccei and Helen R. Quinn. “CP Conservation in the Presence of Pseudoparticles”. In: Phys. Rev. Lett. 38 (25 1977), pp. 1440–1443. DOI: 10.1103/PhysRevLett.
    38.1440. URL: https://link.aps.org/doi/10.1103/PhysRevLett.38.
    1440.
    [2] Steven Weinberg. “A New Light Boson?” In: Phys. Rev. Lett. 40 (4 1978), pp. 223–226.
    DOI: 10.1103/PhysRevLett.40.223. URL: https://link.aps.org/doi/10.
    1103/PhysRevLett.40.223.
    [3] F. Wilczek. “Problem of Strong P and T Invariance in the Presence of Instantons”. In:
    Phys. Rev. Lett. 40 (5 1978), pp. 279–282. DOI: 10.1103/PhysRevLett.40.279. URL:
    https://link.aps.org/doi/10.1103/PhysRevLett.40.279.
    [4] S. Borsanyi et al. “Calculation of the axion mass based on high-temperature lattice
    quantum chromodynamics”. In: Nature 539.7627 (2016), pp. 69–71. DOI: 10.1038/
    nature20115. arXiv: 1606.07494 [hep-lat].
    [5] Michael Dine et al. “Axions, Instantons, and the Lattice”. In: Phys. Rev. D 96.9 (2017),
    p. 095001. DOI: 10.1103/PhysRevD.96.095001. arXiv: 1705.00676 [hep-ph].
    [6] Takashi Hiramatsu et al. “Improved estimation of radiated axions from cosmological
    axionic strings”. In: Phys. Rev. D 83 (2011), p. 123531. DOI: 10.1103/PhysRevD.83.
    123531. arXiv: 1012.5502 [hep-ph].
    [7] Masahiro Kawasaki, Ken’ichi Saikawa, and Toyokazu Sekiguchi. “Axion dark matter
    from topological defects”. In: Phys. Rev. D 91.6 (2015), p. 065014. DOI: 10 . 1103 /
    PhysRevD.91.065014. arXiv: 1412.0789 [hep-ph].
    73
    [8] Evan Berkowitz, Michael I. Buchoff, and Enrico Rinaldi. “Lattice QCD input for axion
    cosmology”. In: Phys. Rev. D 92.3 (2015), p. 034507. DOI: 10.1103/PhysRevD.92.
    034507. arXiv: 1505.07455 [hep-ph].
    [9] Leesa Fleury and Guy D. Moore. “Axion dark matter: strings and their cores”. In: J.
    Cosmol. Astropart. Phys. 01.2016 (2016), pp. 004–004. DOI: 10 . 1088 / 1475 - 7516 /
    2016/01/004. URL: https://doi.org/10.1088/1475-7516/2016/01/004.
    [10] Claudio Bonati et al. “Axion phenomenology and θ-dependence from Nf = 2 + 1
    lattice QCD”. In: JHEP 03.2016 (2016), p. 155. DOI: 10.1007/JHEP03(2016)155.
    arXiv: 1512.06746 [hep-lat].
    [11] Peter Petreczky, Hans-Peter Schadler, and Sayantan Sharma. “The topological susceptibility in finite temperature QCD and axion cosmology”. In: Phys. Lett. B 762 (2016),
    pp. 498–505. DOI: 10 . 1016 / j . physletb . 2016 . 09 . 063. arXiv: 1606 . 03145
    [hep-lat].
    [12] Guillermo Ballesteros et al. “Unifying inflation with the axion, dark matter, baryogenesis and the seesaw mechanism”. In: Phys. Rev. Lett. 118.7 (2017), p. 071802. DOI:
    10.1103/PhysRevLett.118.071802. arXiv: 1608.05414 [hep-ph].
    [13] Vincent B. Klaer and Guy D. Moore. “The dark-matter axion mass”. In: J. Cosmol. Astropart. Phys. 11.2017 (2017), p. 049. DOI: 10 . 1088 / 1475 - 7516 / 2017 / 11 / 049.
    arXiv: 1708.07521 [hep-ph].
    [14] Malte Buschmann, Joshua W. Foster, and Benjamin R. Safdi. “Early-Universe Simulations of the Cosmological Axion”. In: Phys. Rev. Lett. 124.16 (2020), p. 161103. DOI:
    10.1103/PhysRevLett.124.161103. arXiv: 1906.00967 [astro-ph.CO].
    [15] Marco Gorghetto, Edward Hardy, and Giovanni Villadoro. “More axions from strings”.
    In: SciPost Phys. 10.2 (2021), p. 050. DOI: 10.21468/SciPostPhys.10.2.050. arXiv:
    2007.04990 [hep-ph].
    74
    [16] Malte Buschmann et al. “Dark matter from axion strings with adaptive mesh refinement”. In: Nature Commun. 13.1 (2022), p. 1049. DOI: 10.1038/s41467-022-28669-
    y. arXiv: 2108.05368 [hep-ph].
    [17] P. Sikivie. “Experimental Tests of the "Invisible" Axion”. In: Phys. Rev. Lett. 51 (16 1983),
    pp. 1415–1417. DOI: 10.1103/PhysRevLett.51.1415. URL: https://link.
    aps.org/doi/10.1103/PhysRevLett.51.1415.
    [18] P. Sikivie. “Detection rates for “invisible”-axion searches”. In: Phys. Rev. D 32 (11 1985),
    pp. 2988–2991. DOI: 10.1103/PhysRevD.32.2988. URL: https://link.aps.
    org/doi/10.1103/PhysRevD.32.2988.
    [19] Jihn E. Kim. “Weak Interaction Singlet and Strong CP Invariance”. In: Phys. Rev. Lett.
    43 (1979), p. 103. DOI: 10.1103/PhysRevLett.43.103.
    [20] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. “Can Confinement
    Ensure Natural CP Invariance of Strong Interactions?” In: Nucl. Phys. B 166 (1980),
    pp. 493–506. DOI: 10.1016/0550-3213(80)90209-6.
    [21] Michael Dine, Willy Fischler, and Mark Srednicki. “A Simple Solution to the Strong
    CP Problem with a Harmless Axion”. In: Phys. Lett. B 104 (1981), pp. 199–202. DOI:
    10.1016/0370-2693(81)90590-6.
    [22] A. R. Zhitnitsky. “On Possible Suppression of the Axion Hadron Interactions. (In Russian)”. In: Sov. J. Nucl. Phys. 31 (1980), p. 260.
    [23] C. Hagmann et al. “Results from a High-Sensitivity Search for Cosmic Axions”. In:
    Phys. Rev. Lett. 80 (10 1998), pp. 2043–2046. DOI: 10.1103/PhysRevLett.80.2043.
    URL: https://link.aps.org/doi/10.1103/PhysRevLett.80.2043.
    [24] S. J. Asztalos et al. “Experimental Constraints on the Axion Dark Matter Halo Density”. In: The Astrophysical Journal 571.1 (2002), pp. L27–L30. DOI: 10.1086/341130.
    URL: https://doi.org/10.1086/341130.
    75
    [25] S. J. Asztalos et al. “Improved rf cavity search for halo axions”. In: Phys. Rev. D 69 (1
    2004), 011101 (R). DOI: 10.1103/PhysRevD.69.011101. URL: https://link.
    aps.org/doi/10.1103/PhysRevD.69.011101.
    [26] S. J. Asztalos et al. “SQUID-Based Microwave Cavity Search for Dark-Matter Axions”.
    In: Phys. Rev. Lett. 104 (4 2010), p. 041301. DOI: 10 . 1103 / PhysRevLett . 104 .
    041301. URL: https://link.aps.org/doi/10.1103/PhysRevLett.104.
    041301.
    [27] N. Du et al. “Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment”. In: Phys. Rev. Lett. 120 (15 2018), p. 151301. DOI: 10.1103/PhysRevLett.
    120.151301. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
    120.151301.
    [28] T. Braine et al. “Extended Search for the Invisible Axion with the Axion Dark Matter
    Experiment”. In: Phys. Rev. Lett. 124 (10 2020), p. 101303. DOI: 10.1103/PhysRevLett.
    124.101303. URL: https://link.aps.org/doi/10.1103/PhysRevLett.
    124.101303.
    [29] C. Bartram et al. “Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV Mass
    Range”. In: Phys. Rev. Lett. 127.26 (2021), p. 261803. DOI: 10.1103/PhysRevLett.
    127.261803.
    [30] S. Lee et al. “Axion Dark Matter Search around 6.7 µeV”. In: Phys. Rev. Lett. 124.10
    (2020), p. 101802. DOI: 10.1103/PhysRevLett.124.101802. arXiv: 2001.05102
    [hep-ex].
    [31] Junu Jeong et al. “Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope”. In: Phys. Rev. Lett. 125.22 (2020), p. 221302. DOI: 10.1103/PhysRevLett.
    125.221302. arXiv: 2008.10141 [hep-ex].
    [32] Ohjoon Kwon et al. “First Results from an Axion Haloscope at CAPP around 10.7 µeV”.
    In: Phys. Rev. Lett. 126 (19 2021), p. 191802. DOI: 10 . 1103 / PhysRevLett . 126 .
    191802. URL: https://link.aps.org/doi/10.1103/PhysRevLett.126.
    191802.
    76
    [33] K. M. Backes et al. “A quantum enhanced search for dark matter axions”. In: Nature
    590.7845 (2021), 238–242. ISSN: 1476-4687. DOI: 10.1038/s41586-021-03226-7.
    URL: http://dx.doi.org/10.1038/s41586-021-03226-7.
    [34] B. M. Brubaker et al. “First results from a microwave cavity axion search at 24 µeV”. In:
    Phys. Rev. Lett. 118.6 (2017), p. 061302. DOI: 10.1103/PhysRevLett.118.061302.
    arXiv: 1610.02580 [astro-ph.CO].
    [35] L. Zhong et al. “Results from phase 1 of the HAYSTAC microwave cavity axion experiment”. In: Phys. Rev. D 97.9 (2018), p. 092001. DOI: 10.1103/PhysRevD.97.092001.
    arXiv: 1803.03690 [hep-ex].
    [36] “New CAST limit on the axion–photon interaction”. In: Nature Physics 13.6 (2017),
    pp. 584–590. DOI: 10.1038/nphys4109. URL: https://arxiv.org/abs/1705.
    02290.
    [37] Peter W. Graham et al. “Experimental Searches for the Axion and Axion-Like Particles”. In: Annual Review of Nuclear and Particle Science 65.1 (2015), pp. 485–514. DOI:
    10.1146/annurev-nucl-102014-022120. URL: https://arxiv.org/abs/
    1602.00039.
    [38] Hsin Chang et al. “TASEH: A haloscope axion search experiment”. In: (May 2022).
    arXiv: 2205 . 01477 [physics.ins-det]. URL: https : / / arxiv . org / abs /
    2205.01477.
    [39] C. Bartram et al. “Axion dark matter experiment: Run 1B analysis details”. In: Phys.
    Rev. D 103 (3 2021), p. 032002. DOI: 10.1103/PhysRevD.103.032002. URL: https:
    //link.aps.org/doi/10.1103/PhysRevD.103.032002.

    QR CODE
    :::