跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李建緯
Chien-Wei Lee
論文名稱: A parametric model for wearable sensor-based physical activity monitoring data with informative device wear
指導教授: 黃世豪
Shih-Hao Huang
孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: 穿戴式裝置偏誤及變異數之抵換迴歸模型模型選擇三明治變異數估計法
外文關鍵詞: wearable devices, bias-variance trade-o ff, panel count regression, model selection, sandwich variance estimator
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穿戴式裝置提供了收集人類身體活動信息的機會。然而受試者的意願和其他潛在行為,將會使參數估計時產生不可忽略的偏差。在此類型資料的分析中,研究人員通常使用半母數或無母數方法來避免模型錯誤所造成的偏差。但另一方面,有母數方法可以通過模型選擇來控制這種偏差,並且可以大幅的提升運算效率。在本文中,我們提供模擬研究來比較半母數方法和有母數方法的表現,並將我們的方法應用於來自美國國家健康和營養檢查調查的穿戴式裝置數據。


    Wearable devices provide the opportunity to collect information of human being's physical activity. However, there is non-negligible deviation from the subject's willingness and other potential behaviors. In wearable device data analysis, researchers usually utilize semi-parametric or nonparametric approaches to avoid the bias from model misspeci cation. On the other hand, parametric approaches can control such bias by model selection, and can reduce computing time signi cantly. In this paper, we provide simulation studies to compare the performance of the semiparametic and parametric approaches. We apply our approach to the wearable device data from National Health and Nutrition Examination Survey is USA.

    1 Introduction 1 2 Data and Simulation 3 2.1 NHANES Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Parametric Panel Count Regression Model 8 3.1 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Sandwich Variance Estimator . . . . . . . . . . . . . . . . . . . . . 10 3.3 Akaike Information Criterion . . . . . . . . . . . . . . . . . . . . . . 11 4 Numerical Results 13 4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Real-World Data Example . . . . . . . . . . . . . . . . . . . . . . . 22 5 Discussion 24 Reference 25

    Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference: understand-
    ing AIC and BIC in model selection. Sociological Methods and Research, 33,
    261-304.
    Elasho , M., and Louise R. (2004). An EM algorithm for estimating equations.
    Journal of Computational and Graphical Statistics, 13, 48-65.
    Evenson, K. R., Buchner, D. M., and Morland, K. B. (2012). Objective measure-
    ment of physical activity and sedentary behavior among US adults aged 60 years
    or older. Preventing Chronic Disease, 9, E26.
    Evenson, K. R., Goto, M. M., and Furberg, R. D. (2015). Systematic review of
    the validity and reliability of consumer-wearable activity trackers. International
    Journal of Behavioral Nutrition and Physical Activity, 12, 159.
    Hardin, J. (2003). The sandwich estimate of variance. Fomby, T. and Carter Hill,
    R. (Ed.) Maximum Likelihood Estimation of Misspeci ed Models: Twenty Years
    Later, (Advances in Econometrics, Vol. 17). Emerald Group Publishing Limited,
    Bingley, 45-73.
    Huang, C. Y., Wang, M. C., and Zhang, Y. (2006). Analysing panel count data
    with informative observation times. Biometrika, 93, 763-776.
    M^asse, L. C., Fuemmeler, B. F., Anderson, C. B., Matthews, C. E., Trost, S.
    G., Catellier, D. J., and Treuth, M. (2005). Accelerometer data reduction: a
    comparison of four reduction algorithms on select outcome variables. Medicine
    and Science in Sports and Exercise, 37, S544-554.
    Song, J. and Cox, M. G. (2015). acc: an r package to process accelerometer data.
    http://cran.r-project.org/web/packages/acc/.
    Song, J., Swartz, M. D., Gabriel, K. P., and Basen-Engquist, K. (2018).
    A semiparametric model for wearable sensor-based physical activity moni-
    toring data with informative device wear. Biostatistics, 20, 287-298 (Code:
    http://github.com/github-js/semiparametric).
    Troiano, R. P. (2006). Translating accelerometer counts into energy expenditure:
    advancing the quest. Journal of Applied Physiology, 100, 1107{1108.
    Troiano, R. P., McClain, J. J., Brychta, R. J., and Chen, K. Y. (2014). Evolution of
    accelerometer methods for physical activity research. British Journal of Sports
    Medicine, 48, 1019{1023.
    Wang, X., Ma, S., and Yan, J. (2013). Augmented estimating equations for semi-
    parametice panel count regression with informative observation times and cen-
    soring time. Statistica Sinica, 23, 359-381.
    Weng, H.-W. (2019). New insights on \A semi-parametric model for wearable
    sensor-based physical activity monitoring data with informative device wear".
    Master Thesis. Advised by Huang, S.-H. and Sun, L.-H.. Nation Central Uni-
    versity, Taoyuan, Taiwan .

    QR CODE
    :::