跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉弘堅
Hong-Jian Liou
論文名稱: 四邊形網格自動建構之輪廓撒點方法與四邊形網格轉三角形網格之研究
指導教授: 賴景義
Jiing-Yih Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 152
中文關鍵詞: 輪廓撒點非均勻輪廓撒點四邊形網格建構三角形網格建構
外文關鍵詞: Contour seeding, Non-uniform contour seeding, Quadrilateral mesh construction, Triangular mesh construction
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在進行有限元素分析前,需將CAD模型轉成實體網格,而實體網格建構前,必需先完成表面網格的建構。在表面網格建構過程中,需先在3D輪廓上撒點,再將點轉至uv參數平面上,接著在uv參數平面建構表面網格,最後再將網格映射回3D空間。本研究主要對一般性CAD模型進行表面網格的建構,過程中使用本實驗室開發的輪廓撒點技術進行撒點,並以該撒點結果來建構網格,可能會導致網格建構失敗,例如:3D輪廓邊長與uv參數平面上的2D輪廓邊長不一致時,將導致在3D點轉換至2D點後,點距發生改變,進而影響網格建構。另外,當外輪廓邊與內輪廓間的距離小於輪廓上的撒點間距時,可能會導致網格自交或建構失敗。因此本研究提出2D輪廓點縮放及非均勻輪廓撒點的方法,藉此改善輪廓上的點分佈,使網格能夠成功建構。完成輪廓撒點後,即可進行四邊形網格的建構。為了將網格輸出為STL檔案,本研究將透過將建構完成的四邊形網格轉成三角形網格,以符合STL檔案格式。本研究將以每個節點相鄰六個三角形網格為目標來建構網格,藉此提升網格的結構性。在所有測試案例中,與使用Rhinoceros 5 將四邊形網格轉換為三角形網格的方法相比,本研究所提出的方法產生之三角形網格中,相鄰六個三角形網格的節點在總節點數中所佔比例較高,顯示本建構方法能夠建構出結構性較佳的網格。


    Before conducting finite element analysis, the CAD model must be converted into a solid mesh. Prior to constructing the solid mesh, the surface mesh must be generated. During the surface mesh construction process, seeding is first performed on the 3D contour, and the points are then mapped to the uv parameter plane. Subsequently, the surface mesh is constructed in the uv parameter plane and finally mapped back to the 3D space. This study focuses on the construction of surface meshes for general CAD models. During the process, the contour seeding technique developed in this laboratory is used for seeding, and the mesh is constructed based on the seeding results, which may lead to mesh construction failure. For instance, when the edge lengths of the 3D contour and the 2D contour in the uv parameter plane are inconsistent, the point spacing may change after converting 3D points to 2D points, thereby affecting mesh construction. Additionally, when the distance between the inner and outer contours is smaller than the seeding interval on the contours, it may result in mesh self-intersections or failure in mesh construction. Therefore, this study proposes the 2D contour point scaling and non-uniform contour seeding methods to improve the distribution of points along the contours, thereby ensuring successful mesh construction. After completing contour seeding, quadrilateral mesh construction can proceed. To enable mesh export in STL format, this study converts the constructed quadrilateral mesh into a triangular mesh to comply with the STL file requirements. The mesh is generated with the goal of achieving a valence of six at each node, thereby improving the structural regularity of the mesh. In all test cases, compared to the method of converting quadrilateral meshes into triangular meshes using Rhinoceros 5, the triangular meshes generated by the method proposed in this study exhibit a higher proportion of nodes with a valence of six, indicating that the proposed approach can produce meshes with better structural regularity.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 xii 第一章 緒論 1 1.1前言 1 1.2文獻回顧 5 1.3研究目的及研究方法 10 1.3.1研究目的 10 1.3.2研究方法 11 1.4論文架構 14 第二章 輪廓撒點方法回顧 15 2.1前言 15 2.2輪廓撒點方法概述 15 2.3輪廓撒點方法細部介紹 17 2.3.1輸入2D形狀輪廓及預設撒點間距ds 18 2.3.2輪廓及邊資料建立 18 2.3.3邊長及曲線分類 18 2.3.4邊的參數方向排序 20 2.3.5輪廓撒點 23 2.3.6輪廓點資料建立 29 2.4問題分析 32 第三章 一般性CAD模型輪廓撒點方法介紹 39 3.1前言 39 3.2一般性CAD模型輪廓撒點流程介紹 39 3.3 2D輪廓點縮放方法介紹 43 3.3.1等比例縮放2D點 47 3.3.2非等比例縮放2D點 47 3.4非均勻輪廓撒點介紹 51 3.4.1外輪廓撒點方法 51 3.4.2內輪廓撒點方法 61 3.5撒點結果之案例分析 61 3.6網格建構結果之案例分析 79 3.7總結 92 第四章 四邊形網格轉換成三角形網格之方法介紹 93 4.1前言 93 4.2三角形網格建構流程介紹 93 4.3三角形網格建構方法介紹 96 4.4三角形網格建構結果分析 99 4.5總結 123 第五章 結論與未來展望 126 5.1結論 126 5.2未來展望 127 參考文獻 129

    [1] S. H. Lo, “A new mesh generation scheme for arbitrary planar domains”, International Journal for Numerical Methods in Engineering, Vol. 21, No. 8, pp. 1403-1426, 1985.
    [2] J. Peraire, M. Vahdati, K. Morgan and O. C. Zienkiewicz, “Adaptive remeshing for compressible flow computations”, Journal Computational Physics, Vol. 72, pp. 449-466, 1987.
    [3] A. Cunha, S. A. Canann and S. Saigal, “Automatic boundary sizing for 2D and 3D meshes”, Tewnds in Unstructured Mesh Generation, AMD-Vol. 220, pp. 65-72, 1997.
    [4] J. Zhu, T. Blacker, and R. Smith, “Background overlay grid size functions”, Proceedings of the 11th International Meshing Roundtable, pp. 65-74, 2002.
    [5] M. Gammon, H. Bucklow, R. Fairey, “A review of common geometry issues affecting mesh generation”, 2018 AIAA Aerospace Sciences Meeting, pp. 1402, 2018.
    [6] K. Yu, B. Wang, X. Chen, Y. He and J. Chen, “Minimal surface-guided higher-order mesh generation for CAD models”, Computer-Aided Design, Vol. 178, 2025.
    [7] A. A. Al-bana, S. Zahran, S. T. Shahen and M. M. Ahmed, “Performance analysis and validation of different meshing element size used for computational fluid dynamics simulation”, 2023 International Telecommunications Conference (ITC-Egypt), pp.165-168, Alexandria, Egypt, Jul. 18-20, 2023.
    [8] T. D. Blacker and M. B. Stephenson, “Paving: a new approach to automated quadratic mesh generation”, International Journal for Numerical Methods in Engineering, Vol. 32, No. 4, pp. 811-847, 1991.
    [9] R. Cass, “A general three dimensional all quadrilateral surface mesh generation algorithm”, MS. Thesis, Brigham Young University, 1992.
    [10] R. J. Cass and S. E. Benzley, “Generalized 3-D paving: an automated quadrilateral surface mesh generation algorithm”, International Journal for Numerical Methods Engineering, Vol. 39, pp. 1475-1479, 1996.
    [11] D. R. White and P. Kinney, “Redesign of the paving algorithm: robustness enhancements through element by element meshing”, Proc. 6th Int. Meshing Roundtable, pp. 323-335, 1997.
    [12] S. J. Owen, M. L. State, S. A. Canann and S. Saigal, “Q‐morph: an indirect approach to advancing front quad meshing”, International Journal for Numerical Methods in Engineering, pp. 1317-1340, 1999.
    [13] A. V. Skovpen, “Modified algorithm for unstructured quadratic meshing”, RFNC-VNITF, 2004.
    [14] M. S. Ebeida, K. Karamete, E. Mestreau and S. Dey, “Q-tran: a new approach to transform triangular meshes into quadrilateral meshes locally”, Proceedings of the 19th International Meshing Roundtable, pp. 23-34, Springer, 2010.
    [15] W. J. Gordon and C. A. Hall, “Construction of curvilinear co-ordinate systems and applications to mesh generation”, International Journal for Numerical Methods in Engineering, Vol. 7, No. 4, pp. 461-477, 1973.
    [16] X. Roca, J. Sarrate and A. Huerta, “Mesh projection between parametric surfaces”, Communications in Numerical Methods in Engineering, Vol. 22, No. 6, pp. 591-603, 2006.
    [17] J. Y. Lai, P. Putrayudanto and Q. Wang, “Development of automatic quadratic meshing technique with unequal spreading intervals on outer and inner contours for IC CAD models”, System Innovation for an Artificial Intelligence Era, CRC Press, pp. 11-18, 2024.
    [18] J. Y. Lai, J. S. Su, S. C. Tseng, H. J. Liou, S. J. Jheng, J. H. Huang, P. P. Song and Y. C. Tsai, “Quality improvement for an automatic quadratic mesh generation method for IC CAD models”, 2024 International Conference on Machining, Materials and Mechanical Technologies, Phan Thiet City, Vietnam, Sep. 11-15, 2024.
    [19] 陳定輝,「應用於非結構化四邊形網格建構之輪廓撒點與網格品質改善技術發展」,國立中央大學碩士論文,2023。
    [20] 王齊,「四邊形網格自動建構之多尺寸輪廓撒點技術研究」,國立中央大學碩士論文,2024。
    [21] 李奇勳,「非結構化四邊形網格自動建構研究」,國立中央大學碩士論文,2024。
    [22] 蔡敬崙,「四邊形網格自動建構之網格品質改善研究」,國立中央大學碩士論文,2024。
    [23] 梁秉傑,「不同網格類型對於IC CAD模型模流分析之影響探討」,國立中央大學碩士論文,2024。
    [24] 戴宇辰,「混合結構化與非結構化四邊形網格之自動化區域劃分方法發展」,國立中央大學碩士論文,2023。
    [25] 吳弈翰,「IC CAD 模型之混合結構化與非結構化四邊形網格自動建構技術發展」,國立中央大學碩士論文,2024。
    [26] 蘇敬勛,「表面網格自動建構之網格品質優化方法發展」,國立中央大學碩士論文,2025。
    [27] 曾思齊,「IC CAD模型混合結構化與非結構化四邊形網格自動建構技術優化」,國立中央大學碩士論文,2025。
    [28] 鄭憲杰,「應用於IC CAD模型之非結構化四邊形網格自動建構與測試模組研究」,國立中央大學碩士論文,2025。
    [29] Rhinoceros. Available: https://www.rhino3d.com [Accessed May 21, 2025].
    [30] OpenNURBS.Available:https://www.rhino3d.com/tw/features/developer/opennurbs/. [Accessed May 21, 2025].
    [31] B-rep structure. Available: https://developer.rhino3d.com/guides/cpp/brep-data-structure. [Accessed May 21, 2025].

    QR CODE
    :::