跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉秀雲
Hsiu-yun Yeh
論文名稱: 高分子固態電解質改進高分子發光二極體之光學特性研究
Enhancement of PLED Optical Properties by Solid Polymer Electrolyte
指導教授: 諸柏仁
Peter P. Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 90
語文別: 中文
論文頁數: 192
中文關鍵詞: 發光材料電致發光電池高分子發光二極體
外文關鍵詞: PLED, LEC, Light emitting, PL, EL
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子發光二極體(PLED)是共軛高分子近年來最具有工業發展潛力之應用之一。與小分子發光二極體比較具有製程簡單、低成本、可大面積化、可做曲饒性面板、輕薄化等優點。但目前遇到了操作壽命短、操作電壓高、量子效率低、電極介面接合較差等問題。本研究探討利用鋰鹽(LiClO4)與高分子固態電解質(PEO)混摻入發光材料MEHPPV之方法,發現可以有效降低PLED工作電壓。鋰鹽經由電解質柔軟鏈鍛順利進入MEHPPV,並且效能比未添加高分子固態電解質(僅添加鋰鹽或純MEHPPV)之樣品具有較低之操作電壓,較高極子數目,而亮度也相當。
    本文經由7Li NMR觀察混摻樣品之離子運動性,並了解鋰離子之分布狀況。研究發現MEHPPV/(PEO+Li) =60/40相容性最好有較多的鋰離子進入發光材料主結構因其具有較低活化能,在結構上鋰鹽有效的經由PEO的鏈鍛doping進入MEHPPV並且doping於陰電性較高之烷氧基與苯環之間,生成極子(polaron)與雙極子(bipolaron),因此降低能帶差,並增加共軛長度,使得操作電壓因此降低了將近2V。導電度相較於未添加PEO者,增加了101~105,並且因為共軛長度經由PEO的添加而增長,UV及PL發現了光譜往紅位移方向移動將近10nm。在放光效率中以MEHPPV/(PEO+Li)=50/50具有最高螢光強度者具有最佳螢光效率,高於50%MEHPPV之樣品因PEO鏈段的捲繞反而降低了螢光性質。
    本研究對於鋰離子的配位,運動性,活化能及表面紋理對於光性元件之關聯性作探討,希望對將來高分子發光二極體之改質有個參考依據。


    Polymer light-emitting diode (PLED), entails problems such as short lift time, low quantum yield, high running voltage and insufficient interface adhesion between electrode and light emitting materials. In current study we explore a tunable doping by composite a polymer electrolyte, with the light emitting materials, MEHPPV. The study showed that the flexible PEO’s chain motion facilitated the ion doping with MEHPPV, which are otherwise immiscible with ion salt. As a result of the modification, it enhances electron and hole recombination, lowered the work potential and improved the quantum efficiency.
    The dynamics and local structures of lithium ion in the electrolyte composite PLED polymer composite is well illustrated by 7Li NMR. The best miscibility is achieved with MEHPPV/(PEO+Li)=60/40 wt% with the highest amount of lithium doped in MEHPPV. The doping forms polaron and bipolaron and decreased energy band gap, and successively lowered the work potential of about 2V with the conductivity increases 101~105 fold. UV and PL spectra indicated increasing conjugated length resulting form the more effective doping. Surface analyses from AFM and activation energy (Ea) measured from NMR line width provided detailed understanding of the coordination structures and exchange of lithium between MEHPPV and PEO, which contributes to the optical properties. The approach serves as a guidance to improve PLED optical and physical properties with tunable doing by polymer electrolytes.

    目 錄 目錄…………………………………………………………………….……I表目錄………………………………………………...…………………….V圖目錄…………………………………………………….………………VII中文摘要…………………………………………………………….....ⅩIV英文摘要………………………………………………………………ⅩV 第一章 緒論………………………………………………………….……..1 1-1前言………………………………….……………………………….….1 1-2有機共軛導電高分子之發展…….….....……………………………….1 1-3有機共軛高分子的電子狀態…………….……….…………………….2 1-3-1 古典半導體之帶結構理論理論...………...……………..…………..2 1-3-2 共軛高分子之帶傳導理論…………..…...………………..…...3 1-3-3 Doping and Dopants...……………………….…………………….4 1-4 發光理論……………..……..…………………………………………..6 1-4-1 EL與PL發光原理………………………………………….………...6 1-4-2 影響螢光之因素..…………..………………………………………9 1-5 本文架構與目的…..……………………..……………………………11 1-6 第一章參考文獻………..……………………………………………..18 第二章 文獻回顧………………………………………………………….20 2-1 發光材料:PPV系及MEHPPV……………………………………….20 2-1-1 MEHPPV之發展近況………………...……………………………..20 2-1-2 MEHPPV高分子發光二極體……...………………………………..21 2-1-3 MEHPPV高分子發光二極體之改質-結構上………..…………….21 2-1-4 MEHPPV之改質-混摻型發光元件…………………………..…….23 2-2 有激發光二極體之發展.………………..…………………………….26 2-1-1 光色的發展…………………………..………………….………….27 2-2-2 效率及亮度改進的發展…………..…………………….………….28 2-2-3 電極修飾……………………………………………………….….29 2-3 文獻分析…………..………………..…………………………………30 2-4第二章參考文獻……..………………….……………………………..32 第三章 實驗及其技術原理……………………………………………….36 3-1 樣品製備…………..………..…………………………………………36 3-1-1 MEHPPV合成實驗過程…………………..………………...……...36 3-1-1-1單體合成………………………..…………………………….…...36 3-1-1-2 聚合反應………………..………………………………………...38 3-1-1-3 單體與高分子之鑑定………………..…………………………...38 3-1-2 高分子溶液的製備…………………..………………….………….41 3-1-3 元件製作……………………..……………………………………..42 3-1-3-1 基材的選擇與清潔…………………..…………………………...42 3-1-3-2 高分子的塗膜…………………..………………………………...43 3-1-2-3 電極選擇與蒸鍍……………….……………………….…..43 3-1-4 實驗藥品…………..…………………………………………….….44 3-2 分析儀器應用理論及操作程序…………..…………………..………47 3-2-1 結構分析………………..…………………………………………..47 3-2-1-1 傅立葉式紅外線吸收光譜儀(FT-IR)………………..…………..47 3-2-1-2 固態核磁共振儀(Solid state NMR)………………..………….....48 3-2-1-3 微差式掃描熱卡計(DSC)…………………………..…………....57 3-2-1-4 熱重分析儀(TGA)………………………………..……………....59 3-2-2 表面紋理分析……………………………………..………………..60 3-2-2-1掃描式電子顯微鏡(SEM)………………………...……………….60 3-2-2-2 原子力學電子顯微鏡(AFM)…………………..…………………61 3-2-3 電性分析…………………………………………………………..62 3-2-3-1 交流阻抗儀(AC Impendence)……………..……………………..62 3-2-4 光性分析…………………………………..………………………..65 3-2-4-1 紫外光-可見光吸收光譜儀(UV-Vis)…………………...………..65 3-2-4-2 光激發光螢光光譜(PL)與電激發光光譜(EL)..……………..…..65 3-2-5 元件性質分析……………………..……………………………......66 3-2-5-1 電特性分析儀………………..……………………………...……66 3-3 第三章參考文獻…………………………………………………..77 第四章 結果與討論……………………………………………………….80 4-1 材料結構特性之分析…...……..……...………………………………83 4-1-1熱重損失分析………………...…………………...………..………..83 4-1-2 微差掃描卡計之研究分析………………..……..…………....……86 4-1-3 傅立葉紅外線光譜儀之研究分析………..………………………..92 4-1-4 固態核磁共振光譜分析………………..………………………....104 4-1-4-1 CP/MAS NMR光譜…………….……………..………………....104 4-1-4-2 7Li NMR光譜…………………………………..………………..108 4-1-4-3 Li動態動力學-T1及T2 NMR…………………..………………..116 4-2 材料電性特性之分析………………………………………………..134 4-2-1 Li動態動力學-T1及T2 NMR………………………………………134 4-3 材料表面結構分析…………………..………………...…………….143 4-3-1 掃描式電子顯微鏡………………………………………………..143 4-3-2原子力學顯微鏡…………………………………………………....151 4-4 光學特性分析…………………………..……………………………155 4-4-1紫外光-可見光光譜分析…………….…………………………….155 4-4-2螢光光譜分析………………………………………………..……..161 4-5元件特性分析………………………………………………………...166 4-6第四章參考文獻………...………………………………………...….170 第五章 總結……………………………………………………………...174 表目錄 Table 1-1 Typical maximum doping levels.………....………………………6 Table 1-2 The influence of substituents on fluorescence…..………………10 Table 2-1 Polymer LED and LEC…………………...……………………..25 Table 3-1 NMR Chemical shift of monomers and MEHPPV………..……40 Table 3-2 Assignment of the peaks in IR spectrum of MEHPPV………….41 Table 3-3 Weight and mole ratios of composite electrolytes….…………...42 Table 3-4 Chemical structure and supplier in this investigate……………..44 Table 4-1 The symbolize of samples that contents of composition in blending system…………………………………………………82 Table 4-1-2-1 PEOχ%、ΔH、Tm of MEHPPV Blending PEO/LiClO4 System, which have different percentage…..…….………...……89 Table 4-1-3-1 PEO結晶與非結晶相及摻雜LiClO4之紅外線光譜吸收峰位置表………………………………………………………………98 Table 4-1-3-2 純MEHPPV、PEO、LiClO4紅外線光譜主要吸收峰位置表…………………………………………………………………99 Table 4-1-4-1 TCH and T1ρ of different carbon from pure MEHPPV…….106 Table 4-1-4-2 The △1/2 in MEHPPV/[PEO/LiClO4(10%)] system at 238K…………………………………………………………….112 Table 4-1-4-3 The active energy of lithium in every component of every different blending samples…………………………...…………115 Table 4-2-1-1 The conductivity and PEO crystallinity of blend system….139 Table 4-2-1-1 Conductivity and Activation Energy(eV) of Li ion conduction in 10%LiClO4 system…………………….…………………….140 Table4-3-2-1 The morphology of blending sample MEHPPV/PEO/Li(10%) spinning coating on ITO glass obtained from AFM………..….152 圖目錄 Figure 1-1 conjugated structure of 1,3-butene……………………………..13 Figure 1-2 The representation of energy levels of π MOs with increasing size of the molecules for PA, (CH)n…………………………....13 Figure 1-3 Band gap of insulator,semiconductor and metal………………14 Figure 1-4 Actual structures of polarons/bipolarons in Poly(p-phenylene)..14 Figure 1-5 Band structure evolution for Poly(pyrrole)(P(Py))……….…….15 Figure 1-6 A schematic summary of the methods of doping and related chemical and physical phenomena ………………….…………15 Figure 1-7 Photoluminescence(PL) Theory………………………………..16 Figure 1-8 Electroluminescene(EL) Theory………………………………..16 Figure 1-9 Contrast between EL and PL…………………………………17 Figure 1-10 EL Self-absorption of PPV and UV、PL spectra of PPV……..17 Figure 2-1 Flexibility polymer light emitting diode ……………………….31 Figure 2-2 Schematic diagrams of the electrochemical processes in a solid -state light-emitting electrochemical cell………...…………….31 Figure 2-3 interpenetrating network, IPN………………….………………31 Figure 3-1 1H liquid state NMR of monomer of MEHPPV………………..68 Figure 3-2 1H liquid state NMR of MEHPPV…………………………...…68 Figure 3-3 13C liquid state NMR of 1-Methoxy-4-(2-Ethyl-hexyloxy) Benzene………………………………...………………………69 Figure 3-4:13C liquid state NMR of 2,5-bis(Bromomethyl)-1-Methoxy-4-(2- Ethyl-hexyloxy) Benzene………….…………………………...70 Figure 3-5 13C Solid-state NMR Spectra of poly[2-Methoxy-5-(2’-Ethyl- hexyloxy)-p-(phenylene vinlene)](MEHPPV) ………………...71 Figure 3-6 IR spectra of 2,5-bis(Bromomethy)- 1-Methoxy-4-(2-Ethyl– hexyloxy)Benzene and poly[2-Methoxy-5-(2’-Ethyl-hexyloxy)- p-(phenylene vinlene)] (MEHPPV) …………………………...72 Figure 3-7 MEHPPV sample spin coating on ITO glass…………………..73 Figure 3-8 single layer polymer light emitting diode……………………....73 Figure 3-9 Situation of sample and NMR roter…………………………….73 Figure 3-10 the model of Bozeman energy ,and single is recovery by exponent………………………………………………………..74 Figure 3-11 Inversion-Recovery pluse plot………………………….……..74 Figure 3-12 Relaxation time,T1 get from relation of intensity and correlation time……………………………………………………………..74 Figure 3-13 Schematic structure of AFM………………………………….75 Figure 3-14 The formation of fluorescence and phosphorescence of molecules……………………………………………………….76 Figure 3-15 Relaxation constant TCH and T1ρ from different contact time and intensity…...……………………………………………….76 Figure 4-1本論文研究架構之流程圖…………………………………….81 Figure 4-1-1-1 TGA thermogram of MEHPPV and PEO………………….84 Figure 4-1-1-2 TGA thermogram of various percentages of MEHPPV blending samples, which have PEO and 10%LiClO4 of PEO….84 Figure 4-1-1-3 TGA thermogram of various percentages of MEHPPV blending samples, which have PEO and 20%LiClO4 of PEO….85 Figure 4-1-2-1 DSC thermogram of various percentages of MEHPPV blending sample, which have PEO and 10%LiClO4 of PEO…..90 Figure 4-1-2-2 DSC thermogram of various percentages of MEHPPV blending sample, which have PEO and 20%LiClO4 of PEO…..90 Figure 4-1-2-3 DSC thermogram of pure MEHPPV………………………90 Figure 4-1-3-1 The IR spectra of different ratios of PEO and LiClO4……100 Figure 4-1-3-2 IR spectra of pure LiClO4 and PEO………………………101 Figure 4-1-3-3 IR spectra of MEHPPV, MEHPPV/LiClO4 MEHPPV/PEO/Li…………………………………………….101 Figure 4-1-3-4 IR Spectra of various percentages of MEHPPV blending samples, which have PEO and 10%LiClO4 of PEO…………..102 Figure 4-1-3-5 IR Spectra of various percentages of MEHPPV blending samples, which have PEO and 20%LiClO4 of PEO………..…103 Figure 4-1-4-1 Pure MEHPPV at Different Contact time from solid-state 300 Hz NMR spectra…………...………………………………….119 Figure 4-1-4-2 Different situation carbon of Pure MEHPPV in different contact time……...………...………………………………….120 Figure 4-1-4-3 13C NMR spectra in various percentage MEHPPV/(PEO+Li+)………………………………………...121 Figure 4-1-4-4 7Li NMR Spectra of 50 % MEHPPV at various spinning rate (500~4500 Hz). (obtained by 300 MHz solid NMR)…………122 Figure 4-1-4-5 7Li NMR Spectra of 5% MEHPPV at various temperature (208K~348K).…...………...………………………………….123 Figure 4-1-4-6 7Li NMR Spectra of 20% MEHPPV at various temperature (208K~348K).…...………...………………………………….124 Figure 4-1-4-7 7Li NMR Spectra of 40% MEHPPV at various temperature (208K~348K).…...………...………………………………….125 Figure 4-1-4-8 7Li NMR Spectra of 50% MEHPPV at various temperature (208K~348K).…...………...………………………………….126 Figure 4-1-4-9 7Li NMR Spectra of 60% MEHPPV at various temperature (208K~348K).…...………...………………………………….127 Figure 4-1-4-10 7Li NMR Spectra of 80% MEHPPV at various temperature (208K~348K).…...………...………………………………….128 Figure 4-1-4-11 7Li NMR Spectra of MEHPPV/LiClO4 at various temperature (208K~348K)……………………………………129 Figure 4-1-4-12 The Li+ relative weight(%)add to polymer or forming ion pair of blending sample from 7Li NMR Spectra……………..130Figure 4-1-4-13 The △1/2 (full width of a half maximum)in various MEHPPV content in MEHPPV/[PEO/LiClO4(10%)] system from 7Li NMR Spectra……………………………………….131 Figure 4-1-4-14 Variable temperature T1 for different MEFPPV content blending sample...………...……………………..…………….132 Figure 4-1-4-15 The schemematic diagram of the blended electrolyte...…133 Figure 4-2-1-1 Conductivity vs. inverse temperature in the rang from 25℃ to 75 ℃ for 10%LiClO4 system……………………………..141 Figure 4-2-1-2 Conductivity of rising and dropping temperature processes………………………………………………………142 Figure 4-2-1-3 Conductivity of different salt blending 60%MEHPPV/40% [PEO+Salt(10%)] system…..…………………………………142 Figure 4-3-1-1 SEM photo of 10p-50% blending sample film ×1000(a) dissolve it by heating and prepare film in dry box;(b) dissolve it by heating and prepare film in the room;(c) dissolve it by room temperature and prepare film in dry box;(d) dissolve it by room temperature and prepare film in the room…………………….146 Figure 4-3-1-2 SEM photo of 60%MEHPPV/40%(PEO/LiClO4(10%)) blending sample film ×1000 prepare from using different solvents(a)toluene;(b)cyclohexane;(c)Chloroform……..…….147 Figure 4-3-1-3 SEM photo of blending sample film×1000(a)Pure MEHPPV;(b)MEHPPV+LiClO4;(c)MEHPPV+PEO………...148 Figure 4-3-1-4 SEM photo of blending sample film×1000(a)5%(b)20% (c )40%;(d )50%;(e )60%;(f )80% of MEHPPV content in MEHPPV/(PEO/LiClO4(10%))……………………………….149 Figure 4-3-1-5 SEM photo of blending sample film ×1000 (a)5% ;(b) 20% ;(c )40% ; (d )50% ; (e )60% ; (f )80% of MEHPPV content in MEHPPV/(PEO/LiClO4(20%))…………………...150 Figure 4-3-2-1 AFM Micrographs of different blending sample on ITO glass (25μm ×25μm) (a)ITO glass after cleaning;(b)MEHPPV+Li(c) 20% MEHPPV content in MEHPPV/[PEO/LiClO4 (10%)]…..153 Figure 4-3-2-2 AFM Micrographs of different blending sample on ITO glass (25μm ×25μm) (d)40%;(d)60%;(f )80% MEHPPV content in MEHPPV/[PEO/LiClO4(10%)]……………………………....154 Figure 4-4-1-1 UV-Vis spectra of 40%、60%、80% MEHPPV in MEHPPV/ PEO/LiClO4(10%) system using different solvent (chloroform or toluene)………………………………………………………..159 Figure 4-4-1-2 UV-Vis spectra of Pure MEHPPV, MEHPPV/PEO,MEHPPV /Li and MEHPPV/PEO/LiClO4(10%)…………….………..159 Figure 4-4-1-3 UV spectra of various MEHPPV/[PEO/Li+(10%)] blending sample and Pure MEHPPV……………………………...…160 Figure 4-4-1-4 UV spectra of 60% MEHPPV add PEO and different salt.160 Figure 4-4-2-1 PL spectra of 40%、60%、80% MEHPPV contents in MEHPPV/PEO/LiClO4(10%) system use different solvent (chloroform or toluene)…………………………………….164 Figure 4-4-2-2 PL spectra of Pure MEHPPV, MEHPPV/PEO, MEHPPV/Li and MEHPPV/PEO/LiClO4(10%)………………………….164 Figure 4-4-2-3 PL spectra of various MEHPPV/[PEO/Li+(10%)] blending sample and Pure MEHPPV…………………………...……165 Figure 4-4-2-4 PL spectra of 60% MEHPPV add PEO and different salt (Mg(ClO4)2、LiClO4、LiPF6)…..………………………….165 Figure 4-5-1 IV curve of Pure MEHPPV and 20%,40%,60%,80%MEHPPV content in MEHPPV/PEO/Li (10%) blending sample…..…168 Figure 4-5-2 Brightness and apply voltage of Pure MEHPPV and 60%,80% MEHPPV content in MEHPPV/PEO/Li (10%) blending sample……………………………………………………....168

    1-6、第一章參考文獻
    1 A. Angeli, Gazz. Chim. Ital. 1916, 46,Ⅱ, 279.
    2 A. F.Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem.Commun,1979,635.
    3 蕭如娟,科儀新知,1988, 9,6, 65.
    4 A. J.Heeger, D.Braun, Appl.Phys. Lett. 1990,58,1982.
    5 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990,347, 539
    6 K. Susan, E. S.VanderKam., J. S.Gawalt, A. B.Bocarsly, Langmuir,1999, 15, 6598
    7 J. Gmeiner, S. Karg, M. Meier, W. Rieβ,P. Strohriegl, M. Schwoerer, Acta. Polym.,1993,44,201
    8 G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 1992, 357, 477
    9 N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holms, Nature 1993, 356, 628
    10 J. L. Brodas, B. Themans and J. M. Andre, Synth Met., 1984, 9, 265
    11 A. O. Patil, A. J. Heeger, and F. Wdl, Chem. Rev., 1988, 88, 183
    12 M. Boman and D. Stafstrom, Synth. Met. 1993, 55-57, 4614
    13 J. C. Scott, P. Pfluger, M. T. Krounbi and G. B. Street, Physical Review B, 1983, 244, 2140
    14 Prasanna Chandrasekhar Conducting Polymers:Fundamentals and Applications A Practical Approach,1999,p.35Kluwer Academic Publishers
    15 W. R. Salanweck, I. Lund Ström and B. Ranby “Conjugated Polymers and Related Materials The Interconnection of Chemical and Electronic Structure” 1993
    16 A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burroughes, R. H. Friend, N. C. Greenham, R. W. Jackson, A.Kraft, J. H. F. Martens, K. Pichler and I. D. W. Samuel, Synth. Met., 1993,55-57,4031
    17 D. R. Baigent, N. C. Greenham,J. Gruner, R. N. Marks, R. H. Friend, D. C. Moratti and A. B. Homlens Synth. Met., 1994, 67,3
    18 Y. Yang, E. Westerweele, C. Zhang, P. Smith and A. J. Heeger, J. Appl. Phys. 77,694(1995)
    19 Q. Pei, G. Yu, C. Zhang and A. J. Heeger, Science, 1995,269,1086
    20 S. Saito, E. Aminaka, T. Tsutsui and M. Era, J. Lumin., 1994, 60, 902
    21 G. E. Johson, K. M. McGrane and M. Stolka, Pure Appl. Chem.,1995 67, 1975
    22 C. Adachi, K. Nagai and N. Tamoto, Appl. Phys. Lett., 1995, 66, 2679
    23 T. Tsutsui, E. I. Aminaka, Y. Fujita, Y.Hamada and S. Saito, Synth. Met., 1993, 57, 4157
    24 G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature, 1992,357,477
    25 施敏,張俊彥,半導體元件物理與製作技術,85年3月,高立書局再版
    2-4、第二章 參考文獻
    1. R. N. McDonald, T. W. Cambell, J. Am. Chem .Soc.,1960,82,4669
    2. K. D. Gourley, C. P. Lilllyla, J. R. Reynolds, J. C. W. Chien, Macromolecules, 1984,17,1025
    3. K. L. Brandon, P. G. Bentley, D. D. C. Bradley,D. A. Dunmur, Synth. Met. 1997,91,305
    4. Y. Sonoda, Y. Suzuki, E. Van Keuren,H. Matsuda, Macromolecules,1996,29,288
    5. R. A. Weeling, R. G. Zimmermann, U.S. Patent 3, 1968, 401, 152
    6. R. A. Weeling,J. Polym. Symp.1985,72,55
    7. D, Braun and A. J. Heeger,Appl. Phys. Lett.,1991,58,1982
    8. S. Doi, M. Kuwabara, T. Noguchi and Ohnishi, Synth. Met. 1993,55-57,3301
    9. Y. Yang and Q. Pei, J. Appl. Phys. 1995,77,4807
    10. Y. Liu, M. S. Liu, X. -C. Li and A. K. -Y. Jen, Chem. Mater. 1998,10,3301
    11. H. –K. Shim, H. –J. Kim, T. Shn, I. –N. Kang and T. Zyung, Synth. Met. 1997,91,289
    12. P. K. H. Ho, M. Granström, R. H. Friend and Greenham, Adv. Mater.1998,10,769
    13. Q. Pei and F. Klavetter, U.S. Patent Application 08/268763(28 June 1994)
    14. Q. Pei, G. Yu, C. Zhang, Y. Yang,A. J. Heeger ; Science 1995,269,1086
    15. Q. Pei, Y. Yang, Synth. Met.1996,80,131
    16. Q. Pei, Y. Yang,G. Yu, C. Zhang, J. Am. Chem. Soc. 1996,118,3922
    17. Y. Cao, G. Yu, and A. J. Heeger; Appl. Phys. Lett. 1996,68,3218
    18. Q. Pei, Y. Yang; Appl. Phys. Lett. 1996,68,2708
    19. L. Holzer, F. P. Wenzl ; Synth. Met. 1999,102,1022
    20. Q. Pei, Y. Yang, G. Yu, Y. Cao, A. J. Heeger, Synth. Met. 1997,85,1229
    21. L.F.Santos., L.M. Carvalho, F. E. G. Guimarães, D. Goncalces and R. M. Faria, Synth. Met. 1997, 121,1697
    22. S.C. Chang, Y. Li, Y. Yang, J. Phys. Chem., 2001,04,11650
    23. D. Braun and A. J. Heger, Appl. Phy. Lett., 1991,58,1982
    24. G. Gustafsson, Y. Cao, . M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature,1992,357,477
    25. J. Salbeck and Ber. Bunsenges. Phys. Chem., 1996,100,1667
    26. http://www.universaldisplay.com/
    27. 施敏,張俊彥,半導體元件物理與製作技術,85年3月,高立書局再版
    28. M. Yamaguchi, T. Nagatomo, The Solid Filns,2000,363,21
    29. C. S. Chao, W. T. Whang, K. R. Chuang, Journal of Polymer Research,2001,89,3250
    30. N. C. Greenham, S. C., S. C. Moratti, D. D. C. Bradley, R. H. Friend and A. B. Holms, Nature,1993,365,628
    31. I. H. Campbell, T. W. Hagler, D. L. Smit, J. P. Friends,Phys. Rev. Lett 1996,76,1990
    32. U. Mitschke and P. Bäuerle Journal of Materials Feature Article Chemistry,2000,10,1471
    33. S. C. Moratti, R. Cervini, A. B. Homes,D. R. Baigent, R. H. Friend, N. C. Greenham, J. Hamer, Synth. Met., 1995,71,2117
    34. D. R. Baigent, P. J. Hamer, R. H. Friend, S. C. Morattu A. B. Holmes, Synth. Met., 1995,71,2175
    35. S. T. Kim, D.-H. Hwang, X. C. Li, J. Gruner, R. H. Friend, A. B. Holmes, H. K. Shim, Adv. Mater,1996,12,979
    36. Z. Peng and M. E. Gavin, Chem. Mater, 1998,10,1785
    37. Y. Kim, S. Kwon, D. Yoo, M. Ruber, M. S. Wrighton, Chem. Mater, 1997,9,2699
    38. D. R. Baigent, R. H. Friend, J. K. Lee, R. R. Schrock, Synth. Met., 1995,71,2171
    39. H. K. Shim, I. N. Kang, M. S. Jang, T. Zyung, S. D. Jung,Macromolecules,1997,30,7749
    40. A. R. Brown, D. D. C. Bradley, R. H. Friend, Chem. Phy. Phys. Lett.,1992,200,46
    41. X. Zhang and S. A. Jenekhe, Macromolecules, 2000, 33, 2069
    42. A. Bernaaose,M. Conte, P. Vouauzx, J. Chim. Phys.1953,50,64
    43. M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys,1968, 38, 2042
    44. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett.,1987,51,913
    45. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 1990 ,347 ,539
    46. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1989,55,1489
    47. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1990,57,531
    48. C. Zhang, S. Hoger, K. Pakbaz, F. Wudl, A. J. Heeger, J. Electron. Mater. 1994,23,453
    49. M. Yoshida, A. Fujii, Y. Ohmori, K. Yoshino, J. Appl. Phys 1995,34,1546
    50. Y, Cao, I. D. Paker, G. Yu, C. Zhang, A. J. Heeger, Nature, 1999,397,414
    51. F. Cacialli, X.-C. Li, R. H. Friend, S. C. Moratti, A. B. Holmes, Synth. Met.,1995,75,161
    52. T. J. Boyd, Y. Geerts, j. –K. Lee, D. E. Fog, G. G. Lavoie, R. R. Schrock, M. F. Ruber, Macromolecules, 1997 30,3553
    53. Z. Bao, Z. Peng, M. E. Gavin, E. A. Chandross, Chem. Mater.,1998,10,1201
    54. A. W. Grice, A. Tajbakhsh, P. L. Burn, D. D. C. Bradley, Avd. Mater. 1997,9,1174
    55. Z. Peng, Z. Bao, M. E. Galvin, Avd. Mater. 1998,10,680
    56. S.Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules,1999,32,1482
    57. T. J.Gardner , C. Daniel,; M. S. Wrighton, J. Am. Chem. Soc. 1995, 117,6927
    58. S. K. VanderKam,; G. J. Schwartz,; A. B. Bocarsly, Langmuir 1999, 15,6598
    59. Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. J. Heeger, J. Appl. Phys, 1995,77,694
    3-3、第三章參考文獻
    1 C. J. Neef , J. P. Ferraris* Macromolecule 2000, 33, 2311-2314
    2 Z. -K. Chen, J. –Q. Pan, Y. Xiao, N. H. S. Lee, S. -J.Chua, W. Huang* Thin Solid Films 2000, 363,98-101
    3 B. R. Hsieh, Y. Y., A. C.VanLaeken, and H. Lee, Macromolecule 1977, 30, 8094-8095
    4 Book:Infrared Characteristic Group Frequencies,G. Socrates,1980
    5 K. F. Voss, C. M. Foster, L. smiowitx, D. Mihalovin, S. Askari, G. Srdanov, Z. Ni, S. Shi, A. J. Heeger and F. Wuld, Phys. Rev. B 1991, 43, 5109
    6 Pavia Lampman Kriz Introduction to Spectroscopy 4th Sauders College Publishing 1976
    7 游瑞成 有機光譜學 科學大展圖書徐氏基金會1992
    8 Sukhanova, T. E., Urban, J.…., Journal of Materials Science, 1995, 30, 2201-2214.
    9 Z. Xiaoqing, S. Masahiko, T. Akinobu, Polymer, 1994, 35, 4280-4286.
    10 Z. Xiaoqing, S. David H., Macromolecules, 1994, 27, 4919-4926.
    11 K. Erdmann, W. Czerwinski, B. C. Gerstein, and M. Pruski, Journal of Polymer Science: Part B: Polymer Physics, 1994, 32, 1961-1968.
    12 K. J. McGrath, K. L. Ngai, C. M. Roland, Macromolecules, 1995, 28, 2825-2830.
    13 Z. Xiaoqing, K. Takegoshi and H. Kunio, Polymer, 1992, 33, 712-717.
    14 F. Maria, T. Van-Tan and S. Mark E., Polymer, 1994, 35, 1593-1600.
    15 J. Z. Hu, X. Wu, et. al., Solid State Nuclear Magnetic Resonance, 1996, 6, 187-196.
    16 鄒德里, 科儀新知, 1994, 6, 88-96.
    17 Almeria, N.; Alexandra, S. Macromolecules, 1989, 22, 4426-4430.
    18 E. Fukushima, S. B. W.Roeder, “Experimental Pulse NMR-A Nuts and Bolts Approach”, Addison-Wesley: Reading, 1981.
    19 R. N. Ibbett, “NMR Spectroscopy of Polymers Blackie Academic & Professional ”, New York, 1993.
    20 張文宗,台灣大學化學研究所碩士論文,86年1月
    21 劉上宏, 中央大學化學研究所碩士論文,85年6月
    22 Lon J.Mathias. “Solid state NMR of polymer”. Plenum press, New York.1988
    23 Jack L. Koenig. “Spectroscopy of Polymers”. ACS. Wshington, DC.1992
    24 P. P. Chu; Z. –P. He Polymer 2001, 42, 4743
    25 J. F. Rabek, “Experimental Methods in Polymer Chemistry ”, New York, (1980).
    26 P. R. Couchman and F. E. Karasz, Polymer, 38 (1997), 459-462.
    27 L. A. Utracki, Advanced Polymer Technology, 5 (1985), 33.
    28 J. M. Pochan, C. L. Beatty and D. F. Pochan, Polymer, 20 (1979), 879.
    29 M. Gordon and J. S. Taylor, Journal of Applied Chemistry, 2 (1952), 493.
    30 T. G. Fox, Journal of Applied Bulletin American Physical Society, 1 (1956), 123.
    31 陳力俊,”電子顯微鏡學發展沿革與未來趨勢”,科儀新知,86年10月,第十九卷第二期.
    32 J G Webster, “Eelctrical Impedance Tomography”, Adam Hilger, Bristol, 1990.
    33 “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
    34 林鶴南,李龍正,劉克迅,”原子力學顯微技術極其在半導體之應用”,科儀新知,84年12月,第十七卷第三期,p.29
    35 郭騰欽 國立清華大學化學工程研究所碩士論文,88年6月
    4-6、第四章參考文獻
    1 J.S.W.Chien, polyacetyalene: Chemistry ,Physical, and material Science, Academic Press, Orlando,1984
    2 蔡麗娟, 中央大學化學研究所碩士論文,90年6月
    3 黃雅鈴, 中央大學化學研究所碩士論文,90年6月
    4 J. Li, L. M. Pratt, and I. M. Khan, J. Poly. Sc. Part A: Polymer Chemistry, 1995, 33, 657
    5 J. Li and I. M. Khan, Macromolecules, 1993, 26, 4544
    6 方惠芬,中央大學化學研究所碩士論文,87年6月,109-116頁。
    7 C. Berthier, W. Gorecki, M. B. Armand, et. al., Solid State Ionics, 1983, 11, 91
    8 Lee Tae-Woo Chem. Mater. 2001,13, 2217
    9 M. A. Dissanayake and R. Frech, Macromolecules, 1995, 28, 5312
    10 郎長齡,中央大學化學研究所碩士論文,86年6月
    11 Silverstein R. M., Webster F. X., Spectrometric Identification of Organic, 1963.
    12 M. A. Dissanayake and R. Frech, Macromolecules, 1995, 28, 5312-5319.
    13 H. D. Wu, P. P. Chu, C.C.M. MA, F. C. Chang, Macromolecules 1999, 32, 3097
    14 徐若韶,中央大學化學研究所碩士論文,90年6月
    15 J. Li, L. M. Pratt, and I. M. Khan, J. Poly. Sc.: Part A: Polymer Chemistry, 1995, 33, 657.
    16 Cheng T. T., Wen T. C., Journal of Electroanalytical Chemistry, 1998,459,99
    17 Susan K. VanderKam, Ellen S. Gawalt, Jeffrey Schwartz, and Andrew B. Bocarsly, Langmuir 1999,15,6598
    18 A. Johansson, A. Wendsjö and J. Tegenfeldt, Electrochimica Acta, 1992,37, 1487.
    19 A. Johansson and J. Tegenfeldt, J. Chem. Phys., 1996, 104, 5317.
    20 Binesh Nader and S. V. Bhat, J. Polym. Sci.: Part B, Polym. Phys., 1998, 36, 1201
    21 G. S. Fulcher, J. Am. Chem. Soc., 1925, 8, 339
    22 S. H. Chung, K. R. Jeffrey and J. R. Stevenson, J. Chem. Phys., 1991, 94.
    23 P. P. Chu, Hsiu-Ping Jen, Fang-Rey Lo, and C. L. Lang Macromolecules 1999, 32, 4738.
    24 任修平,中央大學化學研究所碩士論文,88年5月
    25 A. Abragam, "The Principles of Nuclear Magnetism ", 1961, Clarendon, Oxford.
    26 Q. Pei, Y. Yang, G. Yu, C. Zhang, and A. J. Heeger, J. Am. Chem. Soc., 1996,118,3922
    27 Y Cao, G. Yu, and A. J. Heeger, Appl. Phy. Lett., 1996,68,3218
    28 C. Yin, Y.-Z. Yang, and S.-y. Zhang Chem. Mater,2000, 12, 1853
    29 P. P. Chu, Z. –P. He Polymer, 2001, 42, 4743
    30 Thomas C. Farrar "Introduction to Pulse NMR Spectroscopy" 1989
    31 Blombergen N, Purcell EM, Pound RV. Phy. Rev., 1948,73,676
    32 Kakihana M., Schantz S,Torell LM. J Chem Phys., 1990,92,6271
    33 劉上宏,中央大學化學研究所碩士論文,85年6月
    34 D. Skoog, F. J. Holler, T. A. Niteman “Principle of Instrumental Analysis 5th ”, 1997,Saunder College Publishing
    35 G. Dufresne, J. Bouchard, M. Bellerere, G. Durocher, L. Leclerc, Macromolecule,2000,33,8252
    36 P. Chandrasekhar “Conducting Polymers, Fundamentals and Applications A Practical Approach” 1999,p.35 Kliweer Academic Publishers
    37 Lee Tae-Woo Chem. Mater., 2001, 13, 2217
    38 Q. Pei, G. Yu, C. Zhang,Y. Yang, and A. J. Heeger Science, 1995, 269,25,1086
    39 Q. Pei and Y. Yang Synatheric Materals, 1996, 80, 131
    40 J. C. de Mello, N. Tessler, S. C. Graham, X. Li, A. B. Holmes and R. H. Friend Synatheric Materals, 1997, 85, 1277
    41 Andersson, A.; Johansson, N.; roms, P.; Lupo, N. Yu, D.; Salaneck, W.R. Adv. Mat., 1998, 11, 859.
    42 VanderKam, S. K.; Schwartz, G. J.; Bocarsly, A. B. Langmuir,1999, 15,6598
    43 Gardner, T. J.; Daniel, C.; Wrighton, M. S. J. Am. Chem. Soc., 1995, 117,6927
    44 D. A. Skoog, F. J. Holler, T. A. Nieman, Principle of Instrumental Analysis, 1997 Saunders College Publishing
    45 K. F. Voss, C. M. Foster, L. Smilowitz, D. Mihailovic, S. Askari, G. Srdanov, Z. Ni, S. Shi, A. J. Heeger, and F. Wudl, Phys. Rev. B. 1991, 43, 5109
    46 M. Atreya, S. Li. E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, W. Huang, Polumer Degradation and Stability, 1999,65,287
    47 M. Jaipal Reddy, Peter P. Chu, Solid State Ionics, 2002 article in press

    QR CODE
    :::