| 研究生: |
李雅萍 Ya-Ping Li |
|---|---|
| 論文名稱: |
干涉式啁啾共振腔色散補償濾光片之研究 INVESTIGATION OF CHIRPED-CAVITY DISPERSIONCOMPENSATOR FILTER |
| 指導教授: |
李正中
Lee Cheng-Chung |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 色散 、色散補償 、群速度 |
| 外文關鍵詞: | group delay, dispersion compensation, dispersion |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來飛秒 (fs, 10-15 sec) 雷射科技的快速進展,已使其成為許多研究領
域所不可或缺的工具,它不僅成為尖端非線性光學以及時間解析光譜學的基礎,
在許多新的領域更有令人驚異的應用, 例如光孤子通訊 (soliton
communication) 、兆赫波光電子學 (terahertz-wave optoelectronics) 、微結構製造
(microstructure fabrication)、多光子顯微術 (multi-photon microscopy) 等等。最近
飛秒雷射更是被發展作為精確頻率尺 (frequency rulers),用來校正最精確的原子
躍遷。超短時寬脈衝雷射振盪器的建造有三個關鍵要素。第一是寬頻的雷射增益
介質(gain medium),第二是適當的脈衝壓縮機制,第三是精確的色散補償,三者
兼備方能達成超短雷射脈衝的產生。
本文利用光學薄膜設計一種干涉式啁啾共振腔色散補償濾光片
(chirped-cavity dispersion compensator filter , CCDCF) , 設計中結合了
Gires-Tournois 干涉濾光片及啁啾(chirped)濾光片的優勢,使其具有更彈性的頻寬
及群速度延遲色散值。此啁啾共振腔色散補償濾光片以高折射率或低折射率整數
倍的二分之ㄧ波膜厚為空間層,並以啁啾結構之反射鏡為兩側之高反射鏡為其基
本結構。在本論文中所設計之啁啾共振腔色散補償濾光片提供了-50 fs2 之群色散
值,頻寬達56THz,而其膜堆之光學厚度僅為Gires-Tournois 干涉濾光片及啁啾
濾光片之一半。論文中並架設一光纖式馬赫任德(Mach-Zehnder)干涉儀量測干涉式濾波片之群延遲(group delay)。此干涉儀提供一簡單、精確且可物理性地瞄繪
出一光學脈波在一般光學材料內拓寬之行為。文中並以量測100GHz 之高密度多
波分工濾波片為例,說明量測時間之長短及高斯視窗之選擇為此量測方式可行的
兩大重點。
The fast progress of femto-second (fs, 10-15 sec) laser technology in the past ten
years, has already made it become a lot of tools with indispensable research field, it
not merely becomes the most advanced nonlinear optics and time foundation of
analyzing spectroscopy, have amazing application even more in a lot of new fields,
such as soliton communication, terahertz-wave optoelectronics, microstructure
fabrication and multi-photon microscopy etc..
Recently, the development of femto-second laser is regarded as accurate frequency
rulers which can be used for correcting the transition of photonics accurately. There
are three key elements to exceed the construction of the ultra-short pulse laser
oscillator. First is the gain medium with wide bandwidth, the second is that the proper
mechanism of pulse compression, and the third is the accurate chromatic dispersion
compensation. Combinating those three key elements combine can yield the
ultra-short pulse laser.
A new basic structure of dispersive compensation filter, chirped-cavity dispersive
compensator (CCDC) filter was designed to include the advantages of small
reflectance and group delay dispersion (GDD) ripples and high dispersive
compensation like the Gires-Tournois interferometer (GTI) filter and wide working bandwidth like chirped mirror (CM). The structure of CCDC is a cavity-type of
Fabry-Perot filter with spacer layer, 2mH or 2mL and chirped high reflector. The
CCDC filter can provide a negative GDD of -50 fs2 over bandwidth of 56THz with
half optical thickness of the CM or GTI. This study also proposes a Mach-Zehnder
interferometer based on the direct group delay measurement of an optical thin film
filter. The interferometer provides a simple, accurate and physically intuitive picture
of what happens to broadband optical pulses on common optical materials. A 100GHz
DWDM filter was used as an example in the measurement and showed that the time
of measurement and selection of Gaussian window were two important factors.
[1] Maria A. J. D., Stetser D. A. and Heynau H., “Self mode-locking of lasers with
saturable absorbers,” Appl. Phys. Lett., 8, pp. 174–176 (1966).
[2] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T.
Asom, “Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an
antiresonant semiconductor Fabry-Perot saturable absorber,” Opt. Lett., 17, pp.
505–507 (1992).
[3] U. Keller, K. Weingarten, F. Kartner, D.Knopf, B.Braun, I. Jung, R. Fluck, C.
Honninger, N. Matuschek and J. aus der Au, “Semiconductor saturable absorber
mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state
lasers,” IEEE J. Sel. Top. Quantum Electron., 2, pp. 435–453 (1996).
[4] Keller U., Nonlinear Optics in Semiconductors, (eds. Garmire, E. & Kost, A.)
211–286 (Academic Press, Boston, 1999).
[5] Spence D. E., Kean P. N. and Sibbett, W., “60-fsec pulse generation from a
self-mode-locked Ti: sapphire laser,” Opt. Lett., 16, pp. 42–44 (1991).
[6] E. Innerhofer, T. Sdmeyer, F. Brunner, R. Hring, A. Aschwanden, R. Paschotta, C.
Hnninger, M. Kumkar, and U. Keller, “60 W average power in 810-fs pulses from a
thin-disk Yb:YAG laser,” Opt. Lett., 28, pp. 367–369 (2003).
[7] L. Kramer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingaiten, and U. Keller,”
Compact Nd: YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J.
Quantum Electron., 38, pp. 1331–1338 (2002).
[8] Shah, J., Ultrafast spectroscopy of semiconductors and semiconductornanostructures, (Springer-Verlag, Berlin, 1996).
[9] Zewail A. H.,” Femtochemistry: Recent progess in studies of dynamics and
control of reactions and their transition states,” J. Phys. Chem., 100, pp. 12701
(1996).
[10] Zewail A. H.,” Femtochemistry: atomic-scale dynamics of chemical bond,” J.
Phys. Chem. A., 104, pp. 5660–5694 (2000).
[11] Valdmanis, J. A. and Mourou, G. A.,” Subpicosecond electrooptic sampling:
principles and applications,” IEEE J. Quantum Electron., 22, pp. 69–78 (1986).
[12] Weingarten, K. J., Rodwell, M. J. W. and Bloom, D. M.,” Picosecond optical
sampling of GaAs integrated circuits,” IEEE J. Quantum Electron., 24, pp. 198–220
(1988).
[13] Ramaswami, R. and Sivarajan, K., Optical Networks: A Practical Perspective,
(Morgan Kaufmann, 1998).
[14] L. F. Mollenauer, P. V. Mamyshev, J. Gripp, M. J. Neubelt, N. Mamysheva, L.
Grüner-Nielsen, and T. Veng, “Demonstration of massive wavelength-division
multiplexing over transoceanic distances by use of dispersion-managed solitons,” Opt.
Lett., 25, pp. 704–706 (2000).
[15] Miller D. A. B., “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum
Electron., 6, pp. 1312–1317 (2000).
[16] Krishnamoorthy, A. V. and Miller D. A. B.,” Scaling optoelectronic-VLSI
circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum
Electron., 2, pp. 55–76 (1996).
[17] Hatziefremidis, A., Papadopoulos, D. N., Fraser, D. and Avramopoulos H.,”
Laser sources for polarized electron beams in cw and pulsed accelerators,” Nucl.
Instrum. Meth. A, 431, pp. 46–52 (1999).
[18] Mollenauer, L. F. and Mamyshev P. V.,”Massive wavelength-division
multiplexing with solitons,” IEEE J. Quantum Electron., 34, pp. 2089–2102 (1998).
[19] L. Krainer, R. Paschotta, G. J. Spühler, I. Klimov, C. Y. Teisset, K. J. Weingarten
and U. Keller, ” Tunable picosecond pulse-generating laser with a repetition rate
exceeding 10 GHz,” Electron Lett., 38, pp. 225–227 (2002).
[20] Zeller S. C., Krainer L., Spühler G. J., Weingarten K. J., Paschotta R. and Keller
U.,” Passively modelocked 40-GHz Er: Yb: glass laser,” Appl. Phys. B, 76, pp.
787–788 (2003).
[21] Huang D., Swanson E. A. and Lin C. P.,” Optical coherence tomography,”
Science, 254, pp. 1178–1181 (1991).
[22] Fujimoto J. G.,” Optical coherence tomography,” C. R. Acad. Sci. Paris Serie IV
2, pp. 1099–1111 (2001).
[23] Boivin L., Wegmueller M., Nuss M. C. and Knox W. H, ” 110 Channels x 2.35Gb/s from a single femtosecond laser,” IEEE Photonics Technology Lett., 11, pp.
466–468 (1999).
[24] Souza E. A. D., Nuss M. C., Knox W. H. and Miller, D. A. B,”
Wavelength-division multiplexing with femtosecond pulses,” Opt. Lett., 20, pp.
1166–1168 (1995).
[25] Spühler G. J., Golding P. S., Krainer L., Kilburn I. J., Crosby P. A., Brownell M.,
Weingarten K. J., Paschotta R., Haiml M., Grange R. and Keller U., ” Novel
multi-wavelength source with 25-GHz channel spacing tunable over the Cband,”
Electron. Lett., 39, pp. 778–780 (2003).
[26] Holzwarth R., Udem Th. and Hänsch T. W., ” Optical frequency synthesizer for
precision spectroscopy,” Phys. Rev. Lett., 85, pp. 2264–2267 (2000).
[27] Holzwarth, R., Zimmermann, M., Udem, T. and Hänsch, T. W., ” Optical
clockworks and the measurement of laser frequencies with a mode-locked frequency
comb,” IEEE J. Quantum Electron., 37, pp. 1493–1501 (2001).
[28] Stenger J., Binnewies T., Wilpers G., Riehle F., Telle H. R., Ranka J. K., Windeler
R. S. and Stentz A. J.,” Phase-coherent frequency measurement of the Ca
intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser,”
Phys. Rev. A, 63, pp. 802 (2001).
[29] Udem, T., Holzwarth, R. and Hänsch, T. W.,” Optical frequency metrology,”Nature, 416, pp. 233–237 (2002).
[30] Telle H. R., Steinmeyer G., Dunlop A. E., Stenger J., Sutter D. H. and Keller U.,”
Carrier-envelope offset phase control: A novel concept for asolute optical frequency
measurement and ultrashort pulse generation,” Appl. Phys. B, 69, pp. 327–332 (1999).
[31] Helbing F. W., Steinmeyer G., Stenger J., Telle H. R. and Keller, U.,”
Carrier-envelope-offset dynamics and stabilization of femtosecond pulses,” Appl.
Phys. B, 74, pp. S35–S42 (2002).
[32] G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori,
and S. De Silvestri,” Absolute-phase phenomena in photoionization with few-cycle
laser pulses,” Nature, 414, pp. 182–184 (2001).
[33] A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch.
Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch and F. Krausz,”
Attosecond control of electronic processes by intense light fields,” Nature, 421, pp.
611–615 (2003).
[34] Drescher Markus, Hentschel Michael and Kienberger Reinhard,” X-ray pulses
approaching the attosecond frontier,” Science, 291, pp. 1923–1927 (2001).
[35] Liu, X., Du, D. and Mourou, G.,” Laser ablation and micromachining with
ultrashort laser pulses,” IEEE J. Quantum Electron., 33, pp. 1706–1716 (1997).
[36] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B.Wellegehausen and H. Welling.,” Ablation of metals by ultrashort laser pulses,” J. Opt.
Soc. Am. B, 14, pp. 2716–2722 (1997).
[37] von der Linde, D., Sokolowski-Tinten, K. and Bialkowski, J.,” Laser-solid
interaction in the femtosecond time regime,” Appl. Surf. Sci., 109/110, pp. 1–10
(1997).
[38] C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Tóth, T. Guo, M. Kammler,
M. Horn von Hoegen, K. R. Wilson, D. von der Linde and C. P. J. Barty,” Detection
of nonthermal melting by ultrafast X-ray diffraction,” Science, 286, pp. 1340–1342
(1999).
[39] Rousse, A. et al.,” Non-termal melting in semiconductors measured at
femtosecond resolution,” Nature, 410, pp. 65–68 (2001).
[40] D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U.
Keller, V. Scheuer, G. Angelow, and T. Tschudi,” Semiconductor saturable-absorber
mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the
two-cycle regime,” Opt. Lett., 24, pp. 631–633 (1999).
[41] R. Ell, U. Morgner, and F. X. Kärtner,” Generation of 5-fs pulses and
octave-spanning spectra directly from a Ti: sapphire laser,” Opt. Lett., 26, pp.
373–375 (2001).
[42] M. Nisoli, S. De Silvestri, and O. Svelto,” Compression of high energy laserpulses below 5 fs,” Optics Lett., 22, pp. 522–524 (1997).
[43] Shirakawa, A., Sakane, I., Takasaka, M. and Kobayashi, T.,” Sub-5-fs visible
pulse generation by pulsefront-matched noncollinear optical parametric
amplification,” Appl. Phys. Lett., 74, pp. 2268–2270 (1999).
[44] L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis,
and I. A. Walmsley,” Characterization of sub-6-fs optical pulses with spectral phase
interferometry for direct electric-field reconstruction,” Opt. Lett., 24, pp. 1314−1316
(1999).
[45] B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S.
De Silvestri, and O. Svelto,” Generation of 3.8-fs pulses from adaptive compression
of a cascaded hollow fiber supercontinuum,” Opt. Lett., 28, pp. 1987-1989 (2003).
[46] Fork, R. L., Martinez, O. E. and Gordon, J. P.,” Negative dispersion using pairs
of prisms,” Opt. Lett., 9, pp. 150–152 (1984).
[47] Andreas Stingl, Christian Spielmann, and Ferenc Krausz,” Generation of 11-fs
pulses from a self-mode-locked Ti: sapphire laser,” Opt. Lett., 18, pp. 977–979
(1993).
[48] P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmid,”
Operation of a femtosecond Ti: sapphire solitary laser in the vicinity of zero
groupdelay dispersion,” Opt. Lett., 18, pp. 54–56 (1993).[49] Zhou Jianping, Taft Greg, Huang Chung-Po, Murnane Margaret M., Kapteyn
Henry C. and Christov Ivan P.,” Pulse evolution in a broad-bandwidth Ti: sapphire
laser,” Opt. Lett., 19, pp. 1149–1151(1994).
[50] Szipöcs, R., Ferencz, K., Spielmann, C. and Krausz, F.,” Chirped multilayer
coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett., 19, pp.
201–203 (1994).
[51] Stingl, A., Lenzner, M., Ch. Spielmann, Krausz, F. and Szipöcs, R.,” Sub-10-fs
mirror-dispersioncontrolled Ti: sapphire laser,” Opt. Lett., 20, pp. 602–604 (1995).
[52] F. X. Krtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf,
V. Scheuer, M. Tilsch, and T. Tschudi,” Design and fabrication of double-chirped
mirrors,” Opt. Lett., 22, pp. 831–833 (1997).
[53] Matuschek, N., Kärtner, F. X. and Keller, U.,” Analytical design of
double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J.
Quantum Electron., 35, 129−137 (1999).
[54] N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer and U. Keller,”
Back-side coated chirped mirrors with ultra-smooth broadband dispersion
characteristics,” Appl. Phys. B, 71, pp. 509-522 (2000).
[55] Ya-Ping Li, Sheng-Hui Chen, and Cheng-Chung Lee,” Chirped-cavity
dispersion-compensation filter design,” Applied Optics, 45, 1525-1529 (2006)
[56] Steinmeyer, G., Sutter, D. H., Gallmann, L., Matuschek, N. and Keller, U.,”
Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear
optics,” Science, 286, pp. 1507–1512 (1999).