| 研究生: |
鄭雲升 Yun-Sheng Cheng |
|---|---|
| 論文名稱: |
結晶製備高水溶性化合物:新穎的十二烷基硫酸鈉 Crystallization of Highly Water-Soluble Compound: A Novel Hydrate Form of Sodium Dodecyl Sulfate (SDS) |
| 指導教授: |
李度
Tu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 十二烷基硫酸鈉 、水合物 、4 水∙SDS 、反溶劑結晶 、冷卻結晶 |
| 外文關鍵詞: | Sodium dodecyl sulfate, Hydrate, SDS tetrahydrate, Antisolvent crystallization, Cooling crystallization |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
十二烷基硫酸鈉(SDS),是一種廣為人知的介面活性劑及賦形劑,被廣泛地應用於洗髮精、洗衣粉、化妝品中的發泡劑亦或作為電泳實驗的試劑。在結晶領域,根據文獻的報導,已被解析過的SDS晶相共有4種,分別為1/8水∙SDS、1/2水∙SDS、1水∙SDS及無水SDS,但大部分對於SDS晶相的研究大多僅注重於結晶本身的探討而並未考慮化學合成,因此本研究之目的在於結合化學反應與常見的反溶劑結晶及冷卻結晶法去設計一個從合成到分離純化SDS結晶的穩定製程。由文獻得知,十二烷醇加硫酸進行酯化反應生成硫酸十二烷酯,再引入氫氧化鈉水溶液使其反應為SDS及副產物硫酸鈉,接著添加的反溶劑(加入丙酮,該丙酮的添加量是原始水溶液中所含水量的4倍)將溶液中的副產物硫酸鈉逼出並進行抽氣過濾,並將母液保留的SDS以冷卻結晶法(攝氏25度冷卻至攝氏5度)進行分離及純化後可得到高結晶度的SDS晶體。然而以本實驗之製程所製得的產物在X射線衍射圖譜(XRD)上無法與上述任一文獻結果相符,但在經過傅里葉變換紅外光譜(FTIR)及拉曼光譜儀(Raman)之定性分析證明了產物確實為SDS,故猜測SDS擁有尚未被發現的水合物晶相。而此水合物晶相在另外設計的反溶劑結晶實驗中成功地以單晶的形式被分離,並經X-射線單晶繞射儀(SXRD)分析為「4水∙SDS」。以本研究之製程所得之產物經由傅里葉變換紅外光譜(FTIR)、熱重分析(TGA)、差示掃描量熱法(DSC)和粉末X射線衍射(PXRD)鑑定後均觀察到和購買的1/8水∙SDS有顯著的差異,且產物PXRD圖譜和4水∙SDS之SXRD圖譜的特徵峰相吻合。
Sodium dodecyl sulfate (SDS) is a well-known surfactant and excipient. It is widely used as shampoos, washing powders, foaming agents in cosmetics, or as reagents for electrophoresis experiments. According to the literature, SDS had four crystal hydrate forms: SDS∙1/8 hydrate, hemihydrate, monohydrate, and dihydrate. Although the crystallization process is generally followed by chemical synthesis, most of the researches only focus on different crystallization methods or conditions for preparing different crystal polymorphs and hydrates/solvates. Therefore, the purpose of this study is to develop a robust process connecting chemical synthesis and crystallization for producing a novel SDS tetrahydrate form. Esterification of dodecanol with concentrated sulfuric acid gives dodecyl sulfate, which then reacts with sodium hydroxide to produce SDS as a product and sodium sulfate as a by-product. Two crystallization methods, including antisolvent addition (i.e. adding acetone which was 4 times than the volume of the water contained in the original aqueous solution) and cooling (i.e. cooling the temperature of the co-solvent system from 25 °C to 5 °C), were combined produce highly crystalline SDS tetrahydrate crystals, as opposed to the commercial form or SDS∙1/8 hydrate. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform infrared (FTIR) and Raman spectroscopy were used to characterize our products. A separate experiment was carried out to grow a single crystal of the novel SDS tetrahydrate form for its structural determination and confirmation by single-crystal X-ray diffraction (SXD).
Chapter 1
1. Mullin, J. W. Crystallization. 4th ed.; Elsevier: Amsterdam, 2001; pp 1-27.
2. Yu, L.; Reutzel-Edens, S. Crystallization| Basic Principles. 2003, 1697-1702.
3. Tung, H.-H.; Paul, E. L.; Midler, M.; McCauley, J. A. Crystallization of organic compounds: an industrial perspective. John Wiley & Sons: Hoboken, 2009; pp 1-9
4. Gotoh, K.; Masuda, H.; Higashitani, K. Preparation of powder. PowderTechnology Hand Book, 2nd ed, Marcel Deekker: New York, 1997; pp 459-468.
5. Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 2014, 9 (6), 304-316.
6. Tung, H.-H.; Paul, E. L.; Midler, M.; McCauley, J. A. Crystallization of organic compounds: an industrial perspective. John Wiley & Sons: Hoboken, 2009; pp 167-178.
7. Price, C. J. Take some solid steps to improve crystallization. Chem. Eng. Prog. 1997, 93 (9), 34-43.
8. Choong, K.; Smith, R. Optimization of batch cooling crystallization. Chem. Eng. Sci. 2004, 59 (2), 313-327.
9. El Kadi, K.; Janajreh, I. Desalination by freeze crystallization: an overview. Int. J. Therm. Sci. 2017, 15 (2), 103-110.
10. Griesser, U. J. The importance of solvates. In Polymorphism in the pharmaceutical industry. ; Hilfiker, R. Wiley-VCH: Weinheim, 2006; pp 211-233.
11. Healy, A. M.; Worku, Z. A.; Kumar, D.; Madi, A. M. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv. Drug Delivery Rev. 2017, 117 (1), 25-46.
12. Tung, H.-H.; Paul, E. L.; Midler, M.; McCauley, J. A. Crystallization of organic compounds: an industrial perspective. John Wiley & Sons: Hoboken, 2009; pp 13-44.
13. Hargreaves, A. E. Chemical formulation: an overview of surfactant based chemical preparations used in everyday life. Royal Society of Chemistry: London, 2007; pp 7-47.
14. Babajanzadeh, B.; Sherizadeh, S.; Ranji, H. Detergents and surfactants: A brief review. Open Acess J Sci. 2019, 3 (3), 94-99.
15. Boonyasuwat, S.; Chavadej, S.; Malakul, P.; Scamehorn, J. F. Anionic and cationic surfactant recovery from water using a multistage foam fractionator. Chem. Eng. J. 2003, 93 (3), 241-252.
16. Craig, V. Australian National University, Re: Why are anionic surfactants better in cleansing and foaming than non-ionic or cationic ?. Retrieved from: https://www.researchgate.net/post/Why_are_anionic_surfactants_better_in_cleansing_and_foaming_than_non-ionic_or_cationic/5b8b7e692a9e7a74e9098582/citation/download (accessed Sep 2nd, 2018).
17. Katz, D. A. the Science of Soaps and Detergents. Illinois: AOCS Publishing: 2000.
18. Rebello, S.; Asok, A. K.; Mundayoor, S.; Jisha, M. S. Surfactants: Chemistry, Toxicity and Remediation. In Pollutant Diseases, Remediation and Recycling, Lichtfouse, E.; Schwarzbauer, J.; Robert, D. Eds.; Springer: Switzerland, 2013; Vol. 4, pp 277-320.
19. Takei, K.; Tsuto, K.; Miyamoto, S.; Wakatsuki, J. Anionic surfactants: lauric products. J. Am. Oil Chem. Soc. 1985, 62 (2), 341-347.
20. Kékicheff, P.; Grabielle-Madelmont, C.; Ollivon, M. Phase diagram of sodium dodecyl sulfate-water system: 1. A calorimetric study. J. Colloid Interf. Sci. 1989, 131 (1), 112-132.
21. Kékicheff, P. Phase diagram of sodium dodecyl sulfate-water system: 2. Complementary isoplethal and isothermal phase studies. J. Colloid Interf. Sci. 1989, 131 (1), 133-152.
22. Miller, R. M.; Ces, O.; Brooks, N. J.; Robles, E. S.; Cabral, J. T. Crystallization of sodium dodecyl sulfate-water micellar solutions under linear cooling. Cryst. Growth Des. 2017, 17 (5), 2428-2437.
23. Smith, L.; Hammond, R.; Roberts, K.; Machin, D.; McLeod, G. Determination of the crystal structure of anhydrous sodium dodecyl sulphate using a combination of synchrotron radiation powder diffraction and molecular modelling techniques. J. Mol. Struct. 2000, 554 (2-3), 173-182.
24. Dell, S. S. The Crystal Structure of Sodium Dodecylsulfate. Acta Chem. Scand. A. 1977, 31 (10), 799-807.
25. Coiro, V.; Mazza, F.; Pochetti, G. Crystal phases obtained from aqueous solutions of sodium dodecyl sulfate. The structure of a monoclinic phase of sodium dodecyl sulfate hemihydrate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1986, 42 (8), 991-995.
26. Coiro, V.; Manigrasso, M.; Mazza, F.; Pochetti, G. Structure of a triclinic phase of sodium dodecyl sulfate monohydrate. A comparison with other sodium dodecyl sulfate crystal phases. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43 (5), 850-854.
27. Lee, T.; Yeh, K. L.; You, J. X.; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible Crystallization of Sodium Dodecyl Sulfate· 1/8 Hydrate by Evaporation, Antisolvent Addition, and Cooling. ACS Omega. 2020, 5 (2), 1068-1079.
Chapter 2
1. Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-93.
2. Liu, Y.; Lotero, E.; Goodwin Jr, J. G. Effect of water on sulfuric acid catalyzed esterification. J. Mol. Catal. A: Chem. 2006, 245 (1-2), 132-140.
3. Theodore, S.; Sai, P. Esterification of ethanol with sulfuric acid: A kinetic study. Can. J. Chem. Eng. 2001, 79 (1), 54-64.
4. Kim, S.; Lotz, B.; Lindrud, M.; Girard, K.; Moore, T.; Nagarajan, K.; Alvarez, M.; Lee, T.; Nikfar, F.; Davidovich, M; Srivastava, S.; Kiang S. Control of the Particle Properties of a Drug Substance by Crystallization Engineering and the Effect on Drug Product Formulation. Org. Process Res. Dev. 2005, 9(6), 894–901.
5. Jiang, J. C.; Lin, J. E. Infrared Spectrum Analysis. In Materials Analysis, 2nd ed.; Wang, C.M. MRS-T: Taiwan, 2014; pp 473-493.
6. Griffiths, P. R.; de Hasseth, J. A. Introduction to Vibrational Spectroscopy. In Fourier Transform Infrared Spectrometry, 2nd edition; Winerordner, J. D., ed.; John Wiley & Sons, Inc.: New Jersey, 2007; pp 1-18.
7. Wang, J. K. Raman Spectrum Analysis. In Materials Analysis, 2nd ed.; Wang, C.M. MRS-T: Taiwan, 2014; pp 494-532.
8. Wang, C. H.; Chen, S. W. Thermal Analysis. In Materials Analysis, 2nd ed.; Wang, C.M. MRS-T: Taiwan, 2014; pp 591-599.
9. Wang, C. H.; Chen, S. W. Thermal Analysis. In Materials Analysis, 2nd ed.; Wang, C.M. MRS-T: Taiwan, 2014; pp 573-590.
10. Wu, N. C.; Wang, C.M. Powder X-ray Diffraction Analysis. In Materials Analysis, 2nd ed.; Wang, C.M. MRS-T: Taiwan, 2014; pp 43-82.
11. Chang, S. L. Single Crystal X-ray Diffraction Analysis. In Materials Analysis, 2nd ed.; Wang, C.M. MRS-T: Taiwan, 2014; pp 11-42.
Chapter 3
1. Anderson, N. G. Solvent selection. In Practical Process Research and Development. Elsevier: Amsterdam, 2000; pp 81-111.
2. Lee, T.; Kuo, C. S.; Chen, Y. H., Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-93.
3. Rebello, S.; Asok, A. K.; Mundayoor, S.; Jisha, M. S. Surfactants: Chemistry, Toxicity and Remediation. In Pollutant Diseases, Remediation and Recycling, Lichtfouse, E.; Schwarzbauer, J.; Robert, D. Eds.; Springer: Switzerland, 2013; Vol. 4, pp 277-320.
4. Takei, K.; Tsuto, K.; Miyamoto, S.; Wakatsuki, J., Anionic surfactants: lauric products. J. Am. Oil Chem. Soc. 1985, 62 (2), 341-347.
5. Wang, W.; Lu, H.; Liu, Y.; Leng, J., Sodium dodecyl sulfate/epoxy composite: water-induced shape memory effect and its mechanism. J. Mater. Chem. A 2014, 2 (15), 5441-5449.
6. Chatterjee, S.; Salaün, F.; Campagne, C., The Influence of 1-Butanol and Trisodium Citrate Ion on Morphology and Chemical Properties of Chitosan-Based Microcapsules during Rigidification by Alkali Treatment. Mar. Drugs 2014, 12 (12), 5801-5816.
7. Hafizah, M.; Riyadi, A.; Manaf, A. In Particle Size Reduction of Polyaniline Assisted by Anionic Emulsifier of Sodium Dodecyl Sulphate (SDS) Through Emulsion Polymerization, IOP Conference Series: Materials Science and Engineering, IOP Publishing: 2019; p 012080.
8. Periasamy, A.; Muruganand, S.; Palaniswamy, M. Vibrational studies of Na2SO4, K2SO4, NaHSO4 and KHSO4 crystals. Rasayan J. Chem. 2009, 2 (4), 981-989.
9. Lee, T.; Yeh, K. L.; You, J. X.; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible Crystallization of Sodium Dodecyl Sulfate· 1/8 Hydrate by Evaporation, Antisolvent Addition, and Cooling. ACS Omega. 2020, 5 (2), 1068-1079.
10. Lawrie, R. A.; Ledward, D. Phenotyping of Animals and Their meat: Applications of Low power Ultrasounds, Near-Infrared Spectroscopy, Raman Spectroscopy, and Hyperspectral Imaging. In Lawrie’s meat science, 8th ed.; Toldra, F. Woodhead Publishing: Sawston, 2014; pp 501-520.
11. Ben Mabrouk, K.; Kauffmann, T. H.; Aroui, H.; Fontana, M. D. Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc 2013, 44 (11), 1603-1608.
12. Picquart, M. Vibrational model behavior of SDS aqueous solutions studied by Raman scattering. Open J. Phys. Chem. 1986, 90 (2), 243-250.
13. Cazzolli, G.; Caponi, S.; Defant, A.; Gambi, C.; Marchetti, S.; Mattarelli, M.; Montagna, M.; Rossi, B.; Rossi, F.; Viliani, G. Aggregation processes in micellar solutions: a Raman study. J. Raman Spectrosc 2012, 43 (12), 1877-1883.
14. Linnow, K.; Zeunert, A.; Steiger, M., Investigation of sodium sulfate phase transitions in a porous material using humidity-and temperature-controlled X-ray diffraction. Anal. Chem. 2006, 78 (13), 4683-4689.
15. Smith, L. A.; Hammond, R. B.; Roberts, K. J.; Machin, D.; McLeod, G. Determination of the Crystal Structure of Anhydrous Sodium Dodecyl Sulphate using a Combination of Synchrotron Radiation Powder Diffraction and Molecular Modelling Techniques. J. Mol. Struct. 2000, 554 (2–3), 173–182.
16. Dell, S. S. The Crystal Structure of Sodium Dodecylsulfate. Acta Chem. Scand. A. 1977, 31 (10), 799-807.
17. Coiro, V.; Mazza, F.; Pochetti, G., Crystal phases obtained from aqueous solutions of sodium dodecyl sulfate. The structure of a monoclinic phase of sodium dodecyl sulfate hemihydrate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1986, 42 (8), 991-995.
18. Coiro, V.; Manigrasso, M.; Mazza, F.; Pochetti, G., Structure of a triclinic phase of sodium dodecyl sulfate monohydrate. A comparison with other sodium dodecyl sulfate crystal phases. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43 (5), 850-854.
19. Kekicheff, P.; Grabielle-Madelmont, C.; Ollivon, M., Phase diagram of sodium dodecyl sulfate-water system: 1. A calorimetric study. J. Colloid Interf. Sci. 1989, 131 (1), 112-132.
20. Newman, J. A.; Schmitt, P. D.; Toth, S. J.; Deng, F.; Zhang, S.; Simpson, G. J. Parts per million powder X-ray diffraction. Anal. Chem. 2015, 87 (21), 10950-10955.
21. Kékicheff, P., Phase diagram of sodium dodecyl sulfate-water system: 2. Complementary isoplethal and isothermal phase studies. J. Colloid Interf. Sci. 1989, 131 (1), 133-152.
22. Kekicheff, P.; Cabane, B., Crystallography of systems with long periods: a neutron-scattering study of sodium dodecyl sulfate/water mesophases. Acta Crystallogr., Sect. B: Struct. Sci. 1988, 44 (4), 395-406.
23. Reus, M. A.; Guguta, C.; Kramer, H. J. M.; ter Horst, J. H. Solubility : Importance , Measurements and Applications. Technobis Crystallization Systems [White Paper]. 2017, 1-8.
24. Coiro, V.; Mazza, F.; Pochetti, G. Crystal phases obtained from aqueous solutions of sodium dodecyl sulfate. The structure of a monoclinic phase of sodium dodecyl sulfate hemihydrate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1986, 42 (8), 991-995.
25. Coiro, V.; Manigrasso, M.; Mazza, F.; Pochetti, G. Structure of a triclinic phase of sodium dodecyl sulfate monohydrate. A comparison with other sodium dodecyl sulfate crystal phases. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1987, 43 (5), 850-854.
26. Kékicheff, P.; Grabielle-Madelmont, C.; Ollivon, M. Phase diagram of sodium dodecyl sulfate-water system: 1. A calorimetric study. J. Colloid Interf. Sci. 1989, 131 (1), 112-132.
27. Liu, Y.; Lotero, E.; Goodwin Jr, J. G. Effect of water on sulfuric acid catalyzed esterification. J. Mol. Catal. A: Chem. 2006, 245 (1-2), 132-140.
28. Theodore, S.; Sai, P. Esterification of ethanol with sulfuric acid: A kinetic study. Can. J. Chem. Eng. 2001, 79 (1), 54-64.
29. Sperline, R. P., Infrared spectroscopic study of the crystalline phases of sodium dodecyl sulfate. Langmuir 1997, 13 (14), 3715-3726.
30. Levy, H. A.; Lisensky, G. C., Crystal structures of sodium sulfate decahydrate (Glauber's salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Crystallogr. B Struct. Cryst. Cryst. Chem. 1978, 34 (12), 3502-3510.
31. Zachariasen, W.; Ziegler, G., The crystal structure of anhydrous sodium sulfate Na2SO4. Z. Kristallogr. Cryst. Mater. 1932, 81 (1-6), 92-101.
32. Chung, S. Y.; Kim, Y. M.; Kim, J. G.; Kim, Y. J., Multiphase transformation and Ostwald’s rule of stages during crystallization of a metal phosphate. Nat. Phys. 2009, 5 (1), 68-73.