| 研究生: |
蔣明勳 Ming-Xun Jiang |
|---|---|
| 論文名稱: |
矽基低維度熱電量測平台之製備與研究 Batch fabrication and thermoelectrical Measurement of Si-based thermoelectric device in low dimension |
| 指導教授: |
李勝偉
Sheng-Wei Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 矽奈米緞帶結構 、熱電量測平台 、半導體製程 、量子點 |
| 外文關鍵詞: | silicon nanoribbon structure, thermoelectric measurement platform, semiconductor process, quantum dots |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從工業革命後,人類社會大量使用石化燃料,除了造成許多汙染外,亦會產生太多無法直接利用的廢熱。熱電材料為一種熱能和電能彼此之間可以互相轉換的材料,我們希望以此將無法利用的廢熱轉化為可以使用的電能。近年來,許多研究指出低維度半導體材料和表面粗糙度可以增加熱電材料轉化效率的評估值(ZT值),因此我們選擇矽(silicon)這種與半導體產業高度相容的材料作為研究對象,將SOI wafer上之矽層以一系列半導體製程(黃光微影、蒸鍍、化學氣相沉積、反應性乾蝕刻……等)製備一量測矽奈米緞帶結構之熱電量測平台,可量測此結構之熱導率、電導率、席貝克係數。隨後量測鍍附矽鍺量子點之表面、選擇性濕蝕刻後之金字塔結構之表面製備的熱電量測微機電系統以探討表面奈米結構對熱電性質之影響。
Since industrial revolution, the fossil fuels is widely used in human society.
It produces much pollution and waste heat we can’t use. Thermoelectrical materials can transform the energy between heat and electric. We wish it can transform the waste heat to electrical force. In this year, there are many research
indicate low-dimensional semiconductor material and surface roughness will increase the ZT value, which can evaluate the thermoelectric conversion efficiency. Therefore, we choose silicon which is highly compatible in semiconductor industry as our research object. After a series of semiconductor process (photolithography, evaporation, CVD, RIE……and so on), the silicon device layer on SOI wafer is batch-fabricated to the thermoelectrical measurement platform of silicon nanoribbon structure. It can measure the thermal conductivity, electrical conductivity, seebeck coefficient. Finally, We study the surface roughness in quantum dots surface and Pyramid structure surface for the thermoelectric property.
[1] T. J. Seebeck, "Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz," Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
[2] J. C. Peltier, "Nouvelles expériences sur la caloricité des courans électrique," Annales de Chimie et de Physique, 56, 371 (1834).
[3] http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history.html
[4] G. Mahan, B. Sales, J. Sharp, "Thermoelectric Materials:New Approaches To An Old Problem," Physics today, 50, 42 (1997).
[5] A. F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, (1957).
[6] H. J. Goldsmd, R. W. Dougl, "The use of semiconductors in thermoelectric refrigeration", British Journal Applied Physics, 5, 386 (1954).
[7] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H Lee, D. Wang, Z. Ren, J. –P. Fleurial, P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials," Advanced Materials, 19, 1043-1053 (2007).
[8] D. T. Morelli, T. Caillat, J. -P. Fleurial, A. Borshchevsky, J. Vandersande, B. Chen, C. Uher, "Low-temperature transport properties of p-type CoSb3," Physical Review B, 51, 9622 (1995).
[9] G. S. Nolas, D. T. Morelli, T. M. Tritt, "SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications," Annual Review Mater, 29, 89 (1999).
[10] T. Caillat, A. Borshchevsky, J.-P. Fleurial, "Properties of single crystalline semiconducting CoSb3," Journal Applied Physics, 80, 4442 (1996).
[11] L. D. Hicks, M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Physical Review B, 47, 16631 (1993).
[12] L. D. Hicks, T. C. Harman, X. Sun, M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 53, 10493 (1996).
[13] L. D. Hicks, M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, 47, 12727 (1993).
[14] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, K. L. Wang, "Experimental proof-of-principle investigation of enhanced ZT in (001) oriented Si/Ge superlattices," Applied Physics Letters, 76, 3944 (2000).
[15] G. Chen, "Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices," Physical Review B, 57, 14958 (1998).
[16] Y. –M. Lin, M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, 68, 75304 (2003).
[17] C. Dames, G. Chen, "Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires," Journal Applied Physics, 95, 682 (2004).
[18] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheil, J. K. Yu, W. A. Goddard III, J. R. Heath, "Silicon nanowires as efficient thermoelectric materials," Nature, 451, 168 (2008).
[19] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, "Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach," Advanced Functional Materials, 20, 357 (2010).
[20]http://www.itrc.narl.org.tw/Research/Nano/instrument/aligner/aligner.htm
[21] http://www.buzzle.com/articles/the-peltier-effect-explained.html
[22] D. M. Rowe, "Thermoelectrics handbook micro to nano," (2006).
[23] Recent Developments inSemiconductor ThermoelectricPhysics and
MaterialsJack Baskin School of Engineering, University of California, Santa Cruz,
California 95064-1077;
[24] Thermoelectric devices based on one-dimensional nanostructures-J. Mater.
Chem. A, 2013,1, 6110-6124
[25] VLSI 製造技術,莊達仁,5 版,高立圖書有限公司
[26]https://zh.wikipedia.org/wiki/%E6%89%93%E7%B7%9A%E6%8E%A5%
E5%90%88
[27] http://www.nnf.ncsu.edu/facilities/lithography/deneme-litho
[28] Dow Corning, “Chemical Vapor Deposition”, ,Available:http://www.dowcorning.com/content/etronics/etronicschem/etronics_newcvd_tutorial3.asp?DCWS=Electronics&DCWSS=Chemical%20Vapor%20Deposition [Accessed: 25 Nov. 2011]
[29] http://matthieu.lagouge.free.fr/microtechnology/dry_etch.html
[30] http://www.super-power-smh.com/company.html新美化光電產品示意圖
[31]http://lnfwiki.eecs.umich.edu/wiki/Plasma_enhanced_chemical_vapor_deposition
[32] G. Kumar, G. Prasad, and R. Pohl, "Experimental determinations of the Lorenz number," Journal of materials science, 28, 4261-4272 (1993).
[33] C. Kittel, "Introduction to solid state physics," Wiley, (2005).
[34] R. Albers, L. Bohlin, M. Roy, and J. Wilkins, "Normal and umklapp phonon decay rates due to phonon-phonon and electron-phonon scattering in potassium at low temperatures," Physical Review B, 13, 768 (1976).
[35] T. Baum, D. J Schiffrin, "AFM study of surface finish improvement by ultrasound in the anisotropic etching of Si in KOH for micromachining applications," Journal of Micromechanics and Microengineering, 7, 338 (1997).
[36] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, P. Yang, "Enhanced thermoelectric performance of rough silicon nanowires," Nature, 451, 163-167 (2008).