| 研究生: |
趙學禮 Syue-li Jhao |
|---|---|
| 論文名稱: |
非晶矽太陽能電池之材料成長、元件製作及特性分析 Growth, Fabrication and Analysis of Amorphous Silicon Solar Cell |
| 指導教授: |
紀國鐘
Gou-chung Chi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 太陽能電池 、非晶矽 |
| 外文關鍵詞: | Amorphous Silicon, Solar Cell |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要目的是以電漿輔助化學氣相沈積系統(Plasma Enhanced Chemical Vapor Deposition,PECVD)在玻璃上成長元件選用較佳化氫化非晶矽i-a-Si:H、p-a-Si:H及n-a-Si:H單層膜各一條件,分析電性、光性、結構性及表面形貌。並將目前實驗的較佳化條件製成相同兩個pin太陽能電池,探討電性、效率及實驗的重複性。
對於i layer薄膜,其電阻率與文獻值比較是落在正常值裡;另外p layer和n layer薄膜的電阻率與文獻值比較,皆減少2個級數。此外,p layer和n layer薄膜的載子濃度也落在正常值內。針對 p layer實驗值與文獻中其他值比較,其τe和Le有不錯的特性;而 n layer
實驗值τh和Lh與文獻值相較之下,其特性就較一般。
從光能隙來看這三片樣品,其值皆落入1.5~2.0 eV,可以間接證明有非晶結構的存在。另外從拉曼光譜曲線來看,對 i layer與p layer而言,其峰值位於477 cm-1,便可直接證明其為非晶矽結構;對n layer而言,其有訊號在477 cm-1可直接證明有非晶矽結構外,另外有訊號在504和513 cm-1,也証實了在非晶矽結構裡,有著奈米晶矽結構的分布存在。
對於非晶矽薄膜在製作光電元件上,其表面粗糙度也是一個重大影響,而這三片樣品皆小於5 nm以下,對平整度而言算相當小的。
此外從SEM也可看出薄膜的均勻性和平整性。
另外從兩片相同條件元件來看,對其Pmax、Jsc、Voc及η而言,實驗上製作元件在相同條件與環境下其上述參數皆約相同,由此可證實此實驗有高度的重複關係性,對於所成長的薄膜與元件上,其品質近似的關連性是可被相信的。
The main goal of the experiment is to grow hydrogenated
amorphous silicon i-a-Si:H, p-a-Si:H and n-a-Si:H thin films of better
single condition chosen to fabricate devices on glass by PECVD (plasma
enhanced chemical vapor deposition) for analyzing electrical, optical,
structural and morphological characteristics. Then, the two same pin solar
cells are made of better condition in order to study electrical
characteristics, efficiency and repeated characterization of the
experiment.
For i layer thin film, its resistivity is in the normal value compared
with the reference value ; the resistivities of the other p layer and n layer
thin films are both smaller by two orders of magnitude than that of the
reference values. In other words, the carrier concentrations of p layer and n layer thin films are in the normal values. The experimental values of player are compared with another values of the reference, and its τe and Le
are with better characteristics ; the experimental values of n layer are
compared with another values of the reference, and its τh and Lh are with
normal characteristics.
To check the three samples from optical band gap, their values are
all in the range from 1.5 to 2.0 eV. Therefore, it can indirectly show the
existence of the amorphous structure. From the Raman spectrum curves,
its peak value is at 477 cm-1 and which shows that the structure for player is the amorphous silicon. On the other hand, the peak value at 477cm-1 depicts the existence of the amorphous silicon structure for n layer.
Moreover, two peaks at 504 and 513 cm-1 proves the existence of the
nanocrystal silicon in the amorphous silicon structure for n layer.
For the amorphous silicon thin films made in the electrical and
optical devices, their surface roughness is also an important affection
where they are under 5 nm for the three samples with less for the surface
roughness. Furthermore, the films are checked for the uniforms and
roughness by SEM.
Considering Pmax, Jsc, Voc and η in the same conditions and
environments from the two same devices, their physical values are the
same experimentally, and it proves the high repeated characteristic. As a
result, the associated characteristic of the similar qualities for the growth
of the thin films and devices can be believed.
[1]: Technical Summary (TS), IPCC Third Assessment Report (TAR),
Working Group I, IPCC
[2]: 楊昌中,能源領域中的奈米科技研究,工業研究院 能源與環境
研究所,中華民國95年12月26日
[3]: V. M. Gusev, V. V. Zadde, A. P. Landsman, and. V. V. Titov, Sov.
Phys.-Solid State 8, 1363 (1966)
[4]: D. E. Carlson and C. R. Wronski, Appl. Phys. Lett. 28, 671(1976)
[5]: Y. Uchida, T. Ichimura, M. Ueno and M. Osawa, J.Phys. 42(1981)
C4-265
[6]: P. H. Fang, L. Ephrath, and W. B. Nowak, Appl. Phys. Lett. 25, 583
(1974)
[7]: H. Morisaki, T. Watanabe, M. Iwase, and K. Yazawa, Appl. Phys.
Lett. 29, 338 (1976)
[8]: 余合興, 光電子學, 第四版, pp202-203, 民國89年9月, 中央圖
書出版社
[9]: J.H. Moller, Semiconductors for Solar Cells, Artech House Inc.,
Boston, MA(1993)
[10]: 簡伶鈺, 繞射式元件之製程及特性分析, 國立中央大學物理研
究所, 中華民國90年
[11]: Schuegraf, Klaus K. ed, Thin Film Deposition Process and
Techniques (Park Ridge,NJ/Noyes Publications/1988)
[12]: 陳建勳, 非晶矽繞射光學元件的製作與分析, p10, 國立中央
大學物理研究所碩士論文, 民國九十四年
[13]: 陳建勳, 非晶矽繞射光學元件的製作與分析, p24, 國立中央大
學物理研究所碩士論文, 民國九十四年
[14]: 李正中, 薄膜光學與鍍膜技術, p386, 第三版, 2002, 藝軒圖書
出版社
[15]: 施敏, 半導體元件物理與製作技術, pp96-98, 第二版, 1980, 國
立交通大學出版社
[16]: 陳立偉, 銀奈米微粒的拉曼強化效應, p11, 國立中央大學物理
研究所碩士論文 ,民國九十四年
[17]: 吳國禎, 分子振動光譜學概論, (2001)
[18]: 藍天蔚,“氣相沉積氮化物奈米線的成長與研究”, 國立中央大
學物理研究所碩士論文, p17, 民國九十四年
[19]: 藍天蔚,“氣相沉積氮化物奈米線的成長與研究”, 國立中央大
學物理研究所碩士論文, pp16-17, 民國九十四年
[20]: 林鶴南, 李龍正, 劉克迅, ”科儀新知”, 17, ( 3), 29 (1995)
[21]: 陳威志,“以原子力顯微鏡於砷化鎵宇氮化镓表面進行局部氧
化微影技術之研究", 中央大學物理研究所碩士論文, 民國九
十二年
[22]: Schuegraf, Klaus K. ed, Thin Film Deposition Process and
Techniques (Park Ridge,NJ/Noyes Publications/1988)
[23]: John Robertson , Appl. Phys. Lett 87, 5(1999)
[24]: A. Matsuda, K. Tanaka, J. Appl. Phys. 60(1986)2351
[25]: J. Perrin, Y. Takeda, N. Hirano, Y. Takeuchi, A. Matsuda, Surf. Sci.
210(1989)114
[26]: A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, A. Yuuki,J.
Perrin, Surf. Sci. 227(1990)50
[27]: S. Veprek, M. Heintze, Plasma Chem. Plasma Process. 11(1990)
335
[28]: M.C.M. van de Sanden, W.M.M. Kessels, A.H.M. Smets, B.A.
Korevaar, R.J. Severens, D.C. Schram, Mater. Res. Soc. Symp.
Proc. 557(1999)13
[29]: R.A. Street, Phys. Rev. B 43, 2454 (1991), R.A. Street, Phys. Rev.B
44, 10610 (1991)
[30]: 陳建勳, 非晶矽繞射光學元件的製作與分析, p24, 國立中央大
學物理研究所碩士論文
[31]: Jerzy Kanicki, Editor, Amorphous and Microcrystalline
Semiconductor Devices, p23, Volume Ⅱ, Artech House
[32]: S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons,
Inc, New York(1981)
[33]: R. Hull, Properties of Crystalline Silicon, INSPEC, London(1999)
[34]: D. Huber, A. Bachmeier, R. Wahlich, H. Herzer [Proc. Conf.
Semiconductor Silicon 1986 Eds. H.R. Huff, T. Abe, B. Kobessen
(Electrochemical Society, USA, 1986)p.1022-32]
[35]: G. Y. Hu, Yuliang He, Chenzhong Yin, Guangxu Cheng, Luchun
Wang, and Xiangna Liu, “The structure and properties of nanosize
crystalline silicon films,” J. Appl. Phys. 75 (2),(1994)
[36]: D. Beeman, Tsu, and M.F. Tporpe, Phys. Rev. B 32,874(1985)
[37]: Donald A. Neamen, “Semiconductor Physics and Devices,” 3rd
edition, McGraw-Hill, New Delhi, 2003.
[38]: S.O. Kasap, Optoelectronics and Photonics: Principles and Practices,
Prentice Hall, Upper Saddle River, NJ (2001)
[39]: 施敏, 半導體元件物理與製作技術, pp478-479, 第二版, 1980,
國立交通大學出版社
[40]: R. Hulstrom, R. Bird, and C. Riordan, “Spectral solar Irradiance
Data Sets for Selected Terrestrial Conditions,” Solar Cells, 15,
365(1985)