跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇美慈
Mei-tzu Su
論文名稱: 某類週期性網格型微分方程行波解之研究
A Study on Traveling Wave Solutions of Some Periodic Lattice Differential Equations
指導教授: 許正雄
Cheng-hsiung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 英文
論文頁數: 30
中文關鍵詞: 存在性週期性上解下解行波解
外文關鍵詞: traveling wave solutions, existence, subsolution, supersolution, monostable
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們主要研究某類diffusively function-coupled週期性網格型微分方程行波解的存在性。根據參考文獻[14]的方法,我們證明當波速高於最小波速時,行波解是存在的。此外,我們探討此類行波解的一些特性。


    In this thesis we investigate the existence of traveling wave solutions of some diffusively function-coupled periodic lattice differential equations. Following the ideas of [14], we show that if the wave speed is above the minimal wave speed, then traveling wave solution exists. Moreover, we discuss the properties of that traveling wave solution.

    中文摘要 ……………………………………………………………i 英文摘要 ………………………………………………………… ii Contents …………………………………………………………iii Abstract ……………………………………………………………1 1.Introduction ……………………………………………………2 2.Existence of the solution for problem (P) ……………3 3.Properties of the traveling wave solution ……………18 References ………………………………………………………28

    [1] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), 949-1032.
    [2] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems. I -Periodic framework, J. Europ. Math. Soc. (2005), to appear.
    [3] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: I - Influence of periodic heterogeneous environment on species persistence, J. Math. Biol. (2005), to appear.
    [4] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: II - Biological invasions and pulsating travelling fronts, J. Math. Pures Appl. (2005), to appear.
    [5] X. Chen, J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations 184 (2002), 549-569.
    [6] X. Chen, J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann. 326 (2003), 123-146.
    [7] S.N. Chow, J. Mallet-Paret, W. Shen, Travelling waves in lattice dynamical systems, J. Differential Equations 149 (1998), 249-291.
    [8] T. Erneux, G. Nicolis, Propagation waves in discrete bistable reactiondiffusion systems, Physica D 67 (1993), 237-244.
    [9] G. F´ath, Propagation failure of traveling waves in a discrete bistable medium, Physica D 116 (1998), 176-190.
    [10] P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics 28, Springer Verlag, 1979.
    [11] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics 7 (1937), 335-369.
    [12] M.I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab. 13 (1985), 639-675.
    [13] J. Gartner, M.I. Freidlin, On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl. 20 (1979), 1282-1286.
    [14] J.-S. Guo and F. Hamel, Front propogation for discrete periodic monostable equations, Math. Ann. 335 (2006), 489-525.
    [15] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
    [16] C.-H. Hsu, S.-S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Differential Equations 164 (2000), 431-450.
    [17] W. Hudson, B. Zinner, Existence of traveling waves for a generalized discrete Fisher’s equation, Comm. Appl. Nonlinear Anal. 1 (1994), 23-46.
    [18] W. Hudson, B. Zinner, Existence of travelling waves for reaction-dissusion equations of Fisher typein periodic media, In: Boundary Value Problems for Functional Differential Equations, J. Henderson (ed.), World Scientific, 1995, pp. 187-199.
    [19] J.P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math. 47 (1987), 556-572.
    [20] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov, ´Etude de l’´equation de la diffusion avec croissance de la quantit´e de mati`ere et son application `a un probl´eme biologique, Bull. Universit´e d’´Etat `a Moscou, Ser. Int., Sect. A. 1 (1937), 1-25.
    [21] J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dyn. Differential Equations 11 (1999), 1-48.
    [22] J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dyn. Differential Equations 11 (1999), 49-127.
    [23] N. Shigesada, K. Kawasaki, Biological invasions: theory and practice, Oxford Series in Ecology and Evolution, Oxford, Oxford University Press, 1997.
    [24] N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Popul. Biology 30 (1986), 143-160.
    [25] B. Shorrocks, I.R. Swingland, Living in a Patch Environment, Oxford University Press, New York, 1990.
    [26] J. Smoller, Shock waves and reaction diffusion equations. Springer-Verlag, Berlin, New York, 1983.
    [27] J. Wu, X. Zou, Asymptotical and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations, J. Differential Equations 135 (1997), 315-357.
    [28] X. Xin, Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity, J. Dynamics Diff. Equations 3 (1991), 541-573.
    [29] X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Rational Mech. Anal. 121 (1992), 205-233.
    [30] X. Xin, Existence and nonexistence of traveling waves and reactiondiffusion front propagation in periodic media, J. Stat. Physics 73 (1993), 893-925.
    [31] J.X. Xin, Existence of multidimensional traveling waves in tranport of reactive solutes through periodic porous media, Arch. Rational Mech. Anal. 128 (1994), 75-103.
    [32] J. Xin, Front propagation in heterogeneous media, SIAM Review 42 (2000), 161-230.
    [33] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol. 45 (2002), 511-548.
    [34] B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations 96 (1992), 1-27.
    [35] B. Zinner, G. Harris, W. Hudson, Traveling wavefronts for the discrete Fisher’s equation, J. Differential Equations 105 (1993), 46-62.

    QR CODE
    :::