| 研究生: |
林宥余 Yu-Iu Lin |
|---|---|
| 論文名稱: |
參數化加速失敗時間模型下標竿劑量之估計 Estimation of the Benchmark dose underparametric accelerated failure time models |
| 指導教授: |
陳玉英
Yuh-Ing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 藥物或毒物可服用劑量 、標竿劑量 、額外反應 、加速失敗時間模型 |
| 外文關鍵詞: | ADI, Benchmark dose, extra response, Accelerated failure time model |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在毒物學的研究中,每日可服劑量 ( Allowable Daily Intakes;簡稱ADI ) 的決定是一項重要的課題。因為每日服用劑量若超過一定的安全劑量,就容易產生毒性反應。本文探討在韋伯分配、對數邏輯斯分配與對數常態分配下的加速失敗時間模型,根據最高可容忍毒性反應所訂定的額外反應估計標竿劑量與標竿劑量下限。模擬研究額外反應、不同存活及設限分布對於標竿劑量估計的影響,最後藉分析一個實驗的資料,說明本文所提方法之應用。
In toxicity study, how to determine the allowable daily intakes(ADI) is an important issue since taking the dose over acceptable region may cause an abnormal adverse. In this study, we estimate the benchmark dose and its lower bound based on the extra response required by the allowable toxic effect when the data are coming from the accelerated failure time model with Weibull, Log-logistic, and Log-normal distribution.
The results of a simulation study investigation the effect of extra response and a varity of survival and censoring distributions on the benchmark dose estimation are presented. Finally, we demonstrated the application of the proposed procedure by analyzing an experimental data.
参考文獻
[1] Crump K. S. (1984). A new method for determining allowable daily
intakes, Fundamental and applied toxicology, 4,854-87.
[2] Crump, K. S. (1995). Calculation of benchmark doses from continuous
data. Risk Analysis 15, 79-89
[3] Ryan, L. (1992). Quantitative risk assessment for developmental toxicity.
Biometrics 48, 163-174.
[4] Al-Saidy O. M., Piegorsch, W.W., West, R.W. and Nitcheva D.K. (2003).
Confidence bands for low-dose risk estimation with quantal response
data, Biometrics 59 ,1056-1062
[5] Kaplan, E.L. and Meier, P. (1958). Nonparameteric estimator from
incomplete observations.Journal of the American Statistical Association
53,457-481
[6] Piegorsch , W.W., West, R.W., Pan,W., Kodell, R.L. (2005). Low dose
risk estimation via simultaneous statistical inferences, Journal of the
Riyal Statistical 54, Part1, 245-258
[7] Wei, L.J. (1992). The Accelerated failure time model: A useful alternative
to the Cox regression model in survival analysis Statistics in Medicine,
11 1871-1879
[8] Gaylor, D. W. and Slikker, W. L. (1990). Risk assessment for neurotoxic
effects. Neurotoxicology, 11, 211–218.
[9] Cox, D.R. (1972). Regression models and life tables. Journal of the Royal
Statistical Society, Ser.B 34 187-220
[10] Upton, A.C., Allen, R.C., Brown, R.C., Clapp, N.K., Conklin, J.W., Cosgrove, G.E, Darden, Jr., E.B., Kastenbaurm, M.A., Odell, Jr., T.T., Serrano, L.J., Tynall, R.L. and Walburg, Jr., H.E. (1969). Quantitative
experimental study of low-level radiation carcinogensis. Radiation
-induced cancer. International Atomic Energy Agency , Vienna,425-438
[11]革惠雯 (2000),右設限資料之下每日可服劑量之研究,國立中央大學統計研究所
[12]王宏福 (2001) ,右設限資料之下每日可服劑量之研究,國立成功大學統計學研究所
[13]林文明(2006),右設限存活資料中每日可服劑量之統計推論, 國立中央大學統計研究所