跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝承安
Chen-An Hsieh
論文名稱: 軟質子交換式MgO:LiNbO3波導作為準相位匹配二倍頻產生藍光之製程與特性探討
Fabrication process and characteristics investigation of the soft proton-exchanged MgO:LiNbO3 waveguide as quasi-phase-matched second-harmonic blue-light generation
指導教授: 陳彥宏
Yen-Hung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: 鈮酸鋰二倍頻軟質子交換波導製程藍光
外文關鍵詞: LiNbO3, second-harmonic generation, soft proton-exchanged, waveguide, Fabrication, blue-light
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射光學的發展提供了高強度的光源,使得非線性光學也得以實際使用到許多研究及日常生活中。而微型化後的積體雷射元件,更是在多種領域中廣泛的發展,例如藍光雷射可應用於生物醫療、光儲存與資訊讀寫、雷射列印以及高解析度印刷器的發展。
    鎂摻雜鈮酸鋰晶體具有高非線性係數以及電光係數且大幅減少了光折變損害,適合應用於和頻以輸出藍光窄頻光源,本研究即在鎂摻雜鈮酸鋰晶體上製作軟質子交換波導與準相位匹配結構,針對波長976nm輸入至488nm藍光輸出的二倍頻轉換進行優化,目的使轉換效率接近理論值。造成實驗和理論轉換效率差異原因有三,一、波導的耦合條件和基頻光976nm的耦合條件不匹配,以至於耦合損耗過大。二、波導中等效折射率造成準相位匹配週期的差異。三、基頻和倍頻模態在波導疊加積分不足。
    首先,本論文使用模場直徑量測法量測出軟質子交換通道式波導的基頻光基模模場分布,取得了實驗上通道式波導的耦合條件。再者,進行等效折射率分布量測,得到976nm基頻光基模在通道式波導內的等效折射率,配合稜鏡耦合器量測並計算出波導內976nm二倍頻轉換所需週期基模轉基模週期𝛬0−0=4.3𝜇𝑚與基模轉第一高階模週期𝛬0−1=5.1𝜇𝑚。最後,計算並優化不同波導製程參數下模場疊加積分變化趨勢,預期在軟質子交換波導種產生高效率二倍頻轉換。


    The development of laser optics promotes the realization of numerous nonlinear optics applications in research and practical purpose. For instance, integrated-blue light lasers can be applied in bio-medical, optical storage, laser printing, and high resolution photolithography.
    Mg-doped Lithium Niobate (Mg:LN) possess high nonlinear coefficient, electro-optical coefficient, and low photorefractive damage effect, which benefit Mg:LN to be the candidate to generate blue-light laser source by nonlinear conversion. This thesis is for the purpose of optimizing the second harmonic generation (976nm to 488nm) conversion efficiency to approach theoretical efficiency in Soft Proton Exchange (SPE) Mg:LN waveguide. There are three factors contribute to the discrepancy between the empirical and theoretical conversion efficiency. First, high coupling loss result from the numerical aperture mismatch of fundamental mode (976nm) and waveguide. Second, imprecise design of QPM grating period from roughly estimated effective refractive index. Third, poor modes overlapping between fundamental and converted mode.
    In the first part of this thesis, we utilize Mode field Diameter (MFD) method to measure the fundamental mode profile of SPE waveguide, and calculate the numerical aperture of our waveguide. Second, with the
    effective refractive index measurement, we measured the effective refractive index with 976nm fundamental mode in SPE channel waveguide, calculate with the effective refractive index with 488nm fundamental mode and first order mode from prism coupler planer waveguide measurement result. We can get the real QPM period with SHG. Period 𝛬0−0=4.3𝜇𝜇 for 976nm fundamental mode generate to 488nm fundamental mode, and period 𝛬0−1=5.1𝜇𝜇 for fundamental mode generate to first order mode. Third, mode-overlapping integrals under different fabrication parameters are calculated and optimized for reducing the discrepancy between ideal and empirical conversion efficiency.

    目 錄 論文摘要..…..…………………………………………………………….I 致謝……………………………………………………………………..IV 目錄……………………………………………………………………..IV圖目……………………………………………………………………..VI 表目………………………………………………………………….......X 第一章 緒論 1-1 非線性光學的發展………………………………1 1-2 積體光學簡介……………………………………2 1-3 鈮酸鋰晶體………………………………………2 1-4 研究動機…………………………………………5 1-5 內容概要…………………………………………8 第二章 非線性轉換理論 2-1 非線性轉換現象………………………………..9 2-2 雙折射相位匹配………………………………12 2-3 準相位匹配技術………………………………14 第三章 軟質子置換式波導 3-1 質子交換波導…………………………………17 3-2 退火式質子交換波導…………………………19 3-3 軟質子交換波導………………………………20 3-4 波導內二倍頻非線性轉換原理………………23 第四章 波導內藍光二倍頻轉換優化與量測原理 4-1 波導內二倍頻轉換因素………………………27 4-2 稜鏡耦合器原理………………………………29 4-3 通道式波導內光場分布與折射率分布量測…31 4-4 波導模場直徑量測……………………………34 第五章 元件製程 5-1 週期性晶疇及化反轉結構製作………………40 5-2 軟質子交換通道式波導製作…………………46 第六章 波導量測與準相位匹配結構週期計算 6-1 通道式波導模場大小量測……………………50 6-2 平面波導量測…………………………………55 6-2.1 折射率變化與等效深度…………………55 6-2.2 模態等效折射率…………………………60 6-3 通道式波導模態等效折射率量測……………64 6-4 模態重疊積分模擬……………………………69 6-5 二倍頻準相位匹配週期計算…………………75 第七章 實驗結論與未來展望 7-1 實驗結論………………………………………77 7-2 未來展望………………………………………78 參考文獻 ……………………………………………………………81

    [1-1] Maiman, T. H., Phys. Rev. Letters, 4, 564 (1960).
    [1-2] P.A. Franken, et al, Physical Review Letters 7, p. 118 (1961)
    [1-3] LE Myers, GD Miller, RC Eckardt, MM Fejer, RL … - Optics …,
    1995 - opticsinfobase.org
    [1-4] W. H. Zachariasen,Skr. Norske Vid-Ada.,Oslo,Mat.
    Naturv. No.4 (1928)
    [1-5] B. T. Matthias and J. P. Remeika, “Ferroelectricity in
    the illmenite structure”,Phys. Rev. 76 (1949) 1886.
    [1-6] A. A. Ballman, “Growth of piezoelectric and
    ferroelectric materials by the Czochralski technique”, J.
    American Ceram. Soc. 48 (1965) 112.
    [1-7] 胡明理, ” Zn:LiNbO3 之晶體生長與其特性研究”, 中央大
    學(2004)
    [1-8] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for
    high-index waveguides in LiNbO3” Appl. Phys. Lett., 41, p.607-608
    (1982).
    [1-9] Takumi Fujiwara et al Appl. Phys. Lett. Vol.61 No.7 1992
    [1.10] OPTICS LETTERS / Vol. 23, No. 13 / July 1, 1998
    [1-11] o. gayer1, z. sacks2 e. galun2 a. arie1 “Temperature and
    wavelength dependent refractive index equations for MgO-doped
    76 congruent and stoichiometric LiNbO3” Appl. Phys. B 91, 343–348 (2008)

    [2-1] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
    Pershan,“Interactions between light waves in a nonlinear dielectric.”,
    Phys. Rev., Vol. 127, 1962
    [2-2] L. E. Myers,* R. C. Eckardt, M. M. Fejer, and R. L. Byer
    “Quasi-phase-matched optical parametric oscillators in bulk periodically
    poled LiNbO3” J. Opt. Soc. Am. B/Vol. 12, No. 11/November 1995
    [2-3] “Process development of soft proton-exchanged waveguides in periodically poled MgO:LiNbO3 for second harmonic generations “中央大學光電科學研究所碩士論文, 謝佳昇, 中華民國一百年一月

    [3-1] “Guided-to-radiation polarization mode conversion in
    electro-optic PPLN APE waveguides“中央大學光電科學研究所碩士論
    文, 鄧聖龍, 中華民國九十七年七月
    [3-2] José Manuel M. M. de Almeida , “Design methodology of
    annealed H+ waveguides in ferroelectric LiNbO3” Optical Engineering
    46_6_, 064601 _June 2007_
    [3-3] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram
    77of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and
    Structural Properties,” IEEE J. Quantum Electronics., 2, p187-196
    (1996).
    [3-4] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram
    of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and
    Structural Properties,” IEEE J. Quantum
    Electronics.,vol.2,pp187-196(1996)
    [3-5] J. L. Jackel. C. E. Rice. and J. J. Veselka, “Proton exchange for high-index waveguides in LiNb03”, Appl. Phys. Lett. 41(7),1 October 1982
    [3-6] Tomoya Sugita, Kiminori Mizuuchi, Yasuo Kitaoka, and
    Kazuhisa Yamamoto ,” 31%-efficient blue second-harmonic generation
    in a periodically poled MgO:LiNbO3 waveguide
    by frequency doubling of an AlGaAs laser diode”, OPTICS LETTERS /
    Vol. 24, No. 22 / November 15, 1999
    [3-7] Y. C. Huang, ”principles of nonlinear optics”, course reader,
    national Tsinghua university,Taiwan(2002)

    [4-1] K. S. Chiang, Journal of lightwave technology, LT-3 (1985) 385
    [4-2] Leon Mccaughan and Ernest E. “Index Distribut.ion of Optical Waveguides from Their Mode Profile” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. LT-1, NO. 1, MARCH 1983
    [4-3] Mark L. von Bibra and Ann Roberts ”Refractive Index Reconstruction of Graded-Index Buried Channel Waveguides from Their Mode Intensities” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 9, SEPTEMBER 1997
    [4-4] D. L. Franzen, MEMBER, IEEE, AND Ramakant Srivastava “Determining the Mode-Field Diameter of Single-Mode Optical Fiber: An Interlaboratory Comparison” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. LT-3, NO. 5, OCTOBER 1985
    [4-5] J. M. Dick, R. A. Modavis, J. G. Racki, and R. A. Westwig, “Automated-mode radius measurement using the variable aperture method in the far field,” in Tech. Dig. Con5 Opt. Fiber Camrnun. (New Orleans, LA), 1984, paper WB3.
    [4-6]Rongqing Hui Mauruce O’Sullivan, “Fiber Optic Measurement Techniques”, Elsevier Academic press, UK (2009)

    [5-1] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical
    damage resistance in lithium niobate,” Appl. Phys.
    Lett.,44,p847-849(1984)
    [5-2] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide
    second-harmonic generation device phase matched with a fan-out
    domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
    [5-3] [26] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated
    by frequency doubling of Laser diode light in a lithium niobate channel
    waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
    [5-4] [27] M. Yamada, N. Nada, M. Saitoh and K.
    Watanabe,”First-order quasi-phase matched LiNbO3 waveguide
    periodically poled by applying an external field for efficient blue
    second-harmonic generation,” Appl. Phys. Lett.,vol.62, p435-436(1993)
    [5-5] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C.
    Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,”
    Appl. Phys. Lett.,vol.60, p2828-2830(1992)
    [5-6]余兆陞,”以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程
    研究”中央大學碩士論文,DOP(2007)
    [5-7] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated 79
    temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)

    QR CODE
    :::