| 研究生: |
王盈婷 Ying-ting Wang |
|---|---|
| 論文名稱: |
多孔性吸附介質的合成及其對重金屬吸附之研究 Synthesis and characterization of porous materials for the adsorption of toxic heavy metal ions |
| 指導教授: |
李俊福
Jiunn-fwu Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 重金屬 、吸附 、表面特性 、多孔性吸附介質 |
| 外文關鍵詞: | mesoporous materials, adsorption, heavy mental, surface characteristics |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於具有結構整齊和一定孔徑分布,因此多孔性吸附介質可當作分子篩對環
境中的汙染物進行吸附或催化,但受限於其孔徑大小多分布於微孔範圍,因此本
研究自行合成多孔性吸附介質,以最具穩定性之水熱合成的方法,改變其合成條
件,試圖改質多孔性吸附介質表面。控制有機模板合成條件、水熱合成條件、移
除模板合成條件、過濾與乾燥方法合成條件、控制pH 合成條件等,將不同條件
合成出的多孔性吸附介質進行儀器表面特性分析,探討不同變因對多孔性吸附介
質合成之影響。並利用重金屬Cu2+、Pb2+、Ni2+進行吸附實驗。多孔性吸附介質
合成實驗結果顯示,使用含碳鏈數越多的三甲基氨鹽作為模板,可使多孔性吸附
介質比表面積變大、孔洞分佈較平均;相反的,若要得到較大的孔洞體積,可以
選擇NTMA(NonylTrimethylAmmoniumBromide)作為模板合成多孔性吸附介質。
水熱條件的時間與溫度均對合成多孔性吸附介質造成影響,水熱時間越長,可以
使孔洞大小分布範圍拉大,但其表面積會明顯下降,水熱溫度越高,可讓其比表
面積越大。移除模板溫度控制在500-7000C 範圍,結果顯示移除模板溫度越高,
可得較大孔洞體積,但比表面積明顯變小。超過7000C 會使多孔性吸附介質結構
崩解。使用透析膜和冷凍乾燥替代傳統抽氣過濾和烘箱乾燥,可以合成較大孔洞
體積之多孔性吸附介質。控制pH=9-12 合成多孔性吸附介質,結果顯示在pH=9
可以合成出較大孔徑之多孔性吸附介質。實驗結果顯示控制pH=5 與等離子強度
條件下進行吸附實驗,可得到較佳吸附效果。本實驗依不同條件所合成之多孔性
吸附劑,由於其表面積的不同,使其吸附效果產生差異,明顯顯示表面積越大,
對重金屬之飽和吸附量越大,多孔性吸附介質對Pb2+的吸附量也較Cu2+與Ni+佳。
Mesoporous materials have great potential for environmental
processes,but many applications require the materials to exhibit specific
surface chemistry and binding sites.The unique surface and pore structure
of ordered mesoporous materials make them promising for applications in
adsorption and catalysis.This study described the effective synthesis of
mesoporous materials with uniform pore arrangement and high surface
area for the adsorption of different metal ions such as Pb2+,Cu2+ and
Ni+.This work involved synthesis of mesoporous materials using several
template and hexadecytrimethylammoniumbromide(HDTMA) was found
to be the effective template resulting into higher surface area and uniform
small pore size.We also discuss the effect of preparation method and
temperature to vary the pore size and surface area.To get the larger pore
size,the calcination of removing the template at higher temperature is
adopted.The mesoporous materials are characterized by FT-IR , XRD,
SEM,TEM and BET.The XRD pattern indicates that the structure of
porous materials is hexagonal.The characteristic peaks in FT-IR for Si-O
is observed around 1082 cm-1 and for CH2 and CH3 is around 2805-2918
cm-1.The adsorption experiments of Pb2+,Cu2+ and Ni+ show that the
adsorption capacity of Pb2+ is higher than that of Cu2+ and Ni+ indicating
that the ion exchange property is mainly dependent on pore size
distribution and surface area of the porous adsorbent materials.
參考文獻
1. Mohan, D.; Pittman, C. U., Activated carbons and low cost
adsorbents for remediation of tri- and hexavalent chromium from
water. Journal of Hazardous Materials 2006, 137, (2), 762-811.
2. McBain, J.W., The Sorption of Gases and Vapours by Solid,
Rutledge and Sons, London, Ch . 5 1932.
3. Corma, A., From microporous to mesoporous molecular sieve
materials and their use in catalysis. Chemical Reviews 1997, 97, (6),
2373-2419.
4. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S., Ordered Mesoporous Molecular-Sieves Synthesized by a
Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397),
710-712.
5. Huo, Q. S.; Margolese, D. I.; Ciesla, U.; Feng, P. Y.; Gier, T. E.;
Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D.,
Generalized Synthesis of Periodic Surfactant Inorganic
Composite-Materials. Nature 1994, 368, (6469), 317-321.
6. Bagshaw, S. A.; Prouzet, E.; Pinnavaia, T. J., Templating of
Mesoporous Molecular-Sieves by Nonionic Polyethylene Oxide
Surfactants. Science 1995, 269, (5228), 1242-1244.
7. Tanev, P. T.; Pinnavaia, T. J., A Neutral Templating Route to
Mesoporous Molecular-Sieves. Science 1995, 267, (5199), 865-867.
8. Sun, T.; Ying, J. Y., Synthesis of microporous transition metal oxide
molecular sieves with bifunctional templating molecules.
134
Angewandte Chemie-International Edition 1998, 37, (5), 664-667.
9. Antonelli, D. M.; Nakahira, A.; Ying, J. Y., Ligand-assisted liquid
crystal templating in mesoporous niobium oxide molecular sieves.
Inorganic Chemistry 1996, 35, (11), 3126-3136.
10. Antonelli, D. M.; Ying, J. Y., Synthesis and characterization of
hexagonally packed mesoporous tantalum oxide molecular sieves.
Chemistry of Materials 1996, 8, (4), 874-881.
11. Antonelli, D. M.; Ying, J. Y., Synthesis of a stable hexagonally
packed mesoporous niobium oxide molecular sieve through a novel
ligand-assisted templating mechanism. Angewandte
Chemie-International Edition in English 1996, 35, (4), 426-430.
12. Chen, F. X.; Huang, L. M.; Li, Q. Z., Synthesis of MCM-48 using
mixed cationic-anionic surfactants as templates. Chemistry of
Materials 1997, 9, (12), 2685-+.
13. Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of
mesoporous silica with periodic 50 to 300 angstrom pores. Science
1998, 279, (5350), 548-552.
14. Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D.,
Nonionic triblock and star diblock copolymer and oligomeric
surfactant syntheses of highly ordered, hydrothermally stable,
mesoporous silica structures. Journal of the American Chemical
Society 1998, 120, (24), 6024-6036.
15. Valange, S.; Guth, J. L.; Gabelica, Z., Synthesis strategies leading to
pure alumina mesophases in aqueous solution. Mesoporous
Molecular Sieves 1998, 117, 517-518.
135
16. Huo, Q. S.; Leon, R.; Petroff, P. M.; Stucky, G. D., Mesostructure
Design with Gemini Surfactants - Supercage Formation in a
3-Dimensional Hexagonal Array. Science 1995, 268, (5215),
1324-1327.
17. Steel, A.; Carr, S. W.; Anderson, M. W., N-14 Nmr-Study of
Surfactant Mesophases in the Synthesis of Mesoporous Silicates.
Journal of the Chemical Society-Chemical Communications 1994,
(13), 1571-1572.
18. Monnier A ,Cooperation formation of inorganic organic interfaces in
the synthesis of silicate mesostructure.Science 1993 ,(261),1299 –
1303.
19. Matijasic, A.; Voegtlin, A. C.; Patarin, J.; Guth, J. L.; Huve, L.,
Room-temperature synthesis of silicate mesoporous materials. An in
situ study of the lamellar to hexagonal phase transition. Chemical
Communications 1996, (10), 1123-1124.
20. Oye, G.; Sjoblom, J.; Stocker, M., Synthesis, characterization and
potential applications of new materials in the mesoporous range.
Advances in Colloid and Interface Science 2001, 89, 439-466.
21. Firouzi, A.; Kumar, D.; Bull, L. M.; Besier, T.; Sieger, P.; Huo, Q.;
Walker, S. A.; Zasadzinski, J. A.; Glinka, C.; Nicol, J.; Margolese,
D.; Stucky, G. D.; Chmelka, B. F., Cooperative Organization of
Inorganic-Surfactant and Biomimetic Assemblies. Science 1995, 267,
(5201), 1138-1143.
22. Lesley Smart and Elaine Moore, 1st ed. 1992.
23. Sayari, A.; Hamoudi, S.; Yang, Y., Applications of pore-expanded
mesoporous silica. 1. Removal of heavy metal cations and organic
136
pollutants from wastewater. Chemistry of Materials 2005, 17, (1),
212-216.
24. Beck, J. S.; Vartuli, J. C., Recent advances in the synthesis,
characterization and applications of mesoporous molecular sieves.
Current Opinion in Solid State & Materials Science 1996, 1, (1),
76-87.
25. Zhao, X. S.; Lu, G. Q., Modification of MCM-41 by surface
silylation with trimethylchlorosilane and adsorption study. Journal
of Physical Chemistry B 1998, 102, (9), 1556-1561.
26. Zhao, X. S.; Lu, G. Q., Modification of MCM-41 by surface
silylation with trimethylchlorosilane and adsorption study. Journal
of Physical Chemistry B 1998, 102, (9), 1556-1561.
27. Herron,N.;Farneth,W.E.,The Design and Synthesis of Heterogeneous
Catalyst Systems. Advanced Materials 1996,8, No.12
28. Chen, N.Y. ;Garwood, W.E.; Dwyer, F.G.,Shape Selective Catalysis
in Industrial applications, Chap. 2, Second Edit., New York.
29. Zhao, W.; Li, Q. Z., Synthesis of nanosize MCM-48 with high
thermal stability. Chemistry of Materials 2003, 15, (22), 4160-+.
30. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S., Ordered Mesoporous Molecular-Sieves Synthesized by a
Liquid-Crystal Template Mechanism. Nature 1992, 359, (6397),
710-712.
31. Cundy, C.S.; Cox, P.A.,The hydrothermal synthesis of zeolites:
Precursors,intermediates and reaction mechanism Microporous and
Mesoporous Materials 2005 (82) 1–78.
137
32. Zoe A.D.; Lethbridge, J. J.; Williams, R. I.; Walton,K. E.; Evans, C
W. S., Methods for the synthesis of large crystals of silicate zeolites.
Microporous and Mesoporous Materials2005 (79) 339–352.
33. Bambrough, C. M.; Slade, R. C. T.; Williams, R. T.; Burkett, S. L.;
Sims, S. D.; Mann, S., Sorption of nitrogen, water vapor, and
benzene by a phenyl-modified MCM-41 sorbent. Journal of Colloid
and Interface Science 1998, 201, (2), 220-222.
34. Branton, P. J.; Hall, P. G.; Sing, K. S. W., Physisorption of Nitrogen
and Oxygen by Mcm-41, a Model Mesoporous Adsorbent. Journal
of the Chemical Society-Chemical Communications 1993, (16),
1257-1258.
35. Raimondo, M.; Perez, G.; Sinibaldi, N.; DeStefanis, A.; Tomlinson,
A. A. G., Mesoporous M41S materials in capillary gas
chromatography. Chemical Communications 1997, (15), 1343-1344.
36. Nooney, R. I.; Kalyanaraman, M.; Kennedy, G.; Maginn, E. J.,
Heavy metal remediation using functionalized mesoporous silicas
with controlled macrostructure. Langmuir 2001, 17, (2), 528-533.
37. Yoshitake, H.; Yokoi, T.; Tatsumi, T., Adsorption behavior of
arsenate at transition metal cations captured by amino-functionalized
mesoporous silicas. Chemistry of Materials 2003, 15, (8),
1713-1721.
38. Lam, K. F.; Yeung, K. L.; McKay, G., An investigation of gold
adsorption from a binary mixture with selective mesoporous silica
adsorbents. Journal of Physical Chemistry B 2006, 110, (5),
2187-2194.
138
39. Corma, A.; Navarro, M. T.; Pariente, J. P., Synthesis of an Ultralarge
Pore Titanium Silicate Isomorphous to Mcm-41 and Its Application
as a Catalyst for Selective Oxidation of Hydrocarbons. Journal of the
Chemical Society-Chemical Communications 1994, (2), 147-148.
40. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M., Heterogeneous
Catalysts Obtained by Grafting Metallocene Complexes onto
Mesoporous Silica. Nature 1995, 378, (6553), 159-162.
41. Kozhevnikov, I. V.; Sinnema, A.; Jansen, R. J. J.; Pamin, K.;
Vanbekkum, H., New Acid Catalyst Comprising Heteropoly Acid on
a Mesoporous Molecular-Sieve Mcm-41. Catalysis Letters 1995, 30,
(1-4), 241-252.
42. Evans, J.; Zaki, A. B.; El-Sheikh, M. Y.; El-Safty, S. A.,
Incorporation of transition-metal complexes in functionalized
mesoporous silica and their activity toward the oxidation of aromatic
amines. Journal of Physical Chemistry B 2000, 104, (44),
10271-10281.
43. Kim, S. S.; Zhang, W. Z.; Pinnavaia, T. J., Catalytic oxidation of
styrene by manganese(II) bipyridine complex cations immobilized in
mesoporous Al-MCM-41. Catalysis Letters 1997, 43, (1-2),
149-154.
44. Liu, C. J.; Li, S. G.; Pang, W. Q.; Che, C. M., Ruthenium porphyrin
encapsulated in modified mesoporous molecular sieve MCM-41 for
alkene oxidation. Chemical Communications 1997, (1), 65-66.
45. Mohana,D.;Charles, U. ;Pittman, J., Activated carbons and low cost
adsorbents for remediation of tri- and hexavalent chromium from
water. Journal of Hazardous Materials 2006 (137) 762–811
139
46. McKay,G.; Ho ,Y.S. ; Ng , J.C.Y., Biosorption of copper from
wastewaters: a review. Separation And Purification Methods
1993,28(1), 87-125.
47. Ahluwalia,S.S.;Goyal,D.,Microbial and plant derived biomass for
removal of heavy metals from wastewater. Bioresource Technology
2007 (98) 2243–2257.
48. Prado, L. L. L.; Nascente, P. A. P.; De Castro, S. C.; Gushikem, Y.,
Aluminium oxide grafted on silica gel surface: Study of the thermal
stability, structure and surface acidity. Journal of Materials Science
2000, 35, (2), 449-453.
49. Schmidt, R.; Junggreen, H.; Stocker, M., Synthesis of a mesoporous
MCM-48 material containing only tetrahedral aluminium. Chemical
Communications 1996, (7), 875-876.
50. Llewellyn, P. L.; Grillet, Y.; Rouquerol, J., Effect of T(Iii) Zoning in
Mfi-Type Zeolites on the Adsorption-Isotherm and Differential
Enthalpies of Adsorption at 77-K. Langmuir 1994, 10, (2), 570-575.
51. Llewellyn, P. L.; Pellenq, N.; Grillet, Y.; Rouquerol, F.; Rouquerol,
J., Quasi-Equilibrium Adsorption Gravimetry of Water on Mfi-Type
and Fer-Type Zeolites and on an Afi-Type Aluminophosphate.
Journal of Thermal Analysis 1994, 42, (5), 855-867.
52. Selvam, P.; Bhatia, S. K.; Sonwane, C. G., Recent advances in
processing and characterization of periodic mesoporous MCM-41
silicate molecular sieves. Industrial & Engineering Chemistry
Research 2001, 40, (15), 3237-3261.
140
53. Gregg, S. J.;Sing ,K. S. W., Adsorption, Surface Area and
Porosity. Academic Press Inc., London,1982.
54. Issabayeva,G.;Aroua,M.K.;Meriam,N.;Sulaiman,N.,Removal of
lead from aqueous solutions on palm shell activated carbo,Bioresource
Technology 2006, 97, 2350-2355.
55. Wang,X.S.;Qin,Y.,Equilibrium sorption isotherms for of Cu2+ on rice
bran, Process Biochemistry2005, 40, 677-680.
56. McKay,G;Ho,Y.S. ; Ng, J.C.Y., Biosorption of Copper from Waste
Waters: A Review, Separation & Purification Reviews1999, 28,(1),
87-125.
57. Sarabjeet, S. A.; Dinesh, G., Microbial and plant derived biomass for
removal of heavy metals from wastewater, Bioresource Technology
2007,98,2243-2257.