| 研究生: |
江昇鴻 Sheng-hong Jiang |
|---|---|
| 論文名稱: |
新型光學式自動聚焦顯微鏡的設計與其性能分析 Design and analysis of novel optics-based autofocusing microscope |
| 指導教授: |
何正榮
Jeng-rong Ho 劉建聖 Chien-sheng Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 雷射源 、自動聚焦 、顯微鏡 、三角測距 、檢測 |
| 外文關鍵詞: | Laser, autofocusing, microscope, triangulation, Inspection |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一套新型光學式自動聚焦顯微鏡,其架構乃是將三角測距、刀緣法、重心法、像散法和兩個不同放大倍率的成像光路作結合,並從離焦光斑隨待測物相對位置之變化情形,以此作為聚焦的判斷依據。
本論文系統架構茲說明如下:一準直鏡將雷射光源準直擴束後,才通過一遮蔽物(knife)與分光鏡(BS1),並藉由反射鏡將光源送至物鏡並聚焦於待測物上。由待測物產生一反射光束會依原路徑折反回光路系統中,此時,經由分光鏡(BS1)將光源反射至分光鏡(BS2)後,便可將光束分為兩道(光路I和光路II),兩道光束最後各自通過兩相互垂直的圓柱透鏡,才各別成像於感測器(CCD1和CCD2)上。其中光路I適合長距離、低定位精度的聚焦;光路II適合短距離、高定位精度的聚焦,透過此系統來結合兩個光路,可達到長距離、高定位精度的聚焦。藉由兩光路之性能互補並結合訊號演算法來完成一套自動聚焦顯微鏡。
根據模擬與實驗結果顯示,我們的系統相較傳統使用凸透鏡之舊架構有較高之聚焦精度。且在相同聚焦精度下,以雙行程感測光路做聚焦時,其對焦次數都少於單光路聚焦。
In this thesis, a novel optics-based autofocusing microscope was developed based on triangulation, knife-edge method, centroid method, astigmatic method and two optical paths. According to the different distance between the sample and the objective lens, the shape of the laser spot also varies and can be detected by a CCD sensor, i.e., the defocus distances can be found.
In this structure of the proposed autofocusing microscope, the light beam is expanded and collimated by means of an expander lens and is then bisected by a knife. The light beam is then passed through BS1, mirror, objective lens and is incident on the sample surface. The laser light reflected from the sample surface passes back through the objective lens, mirror, BS1 and is then incident on a BS2, where it is split into two separate optical paths(Optical Path I and II). Finally, the two separate optical paths are passed through two cylindrical lens, where they are perpendicular to one another and is then incident on CCD1 and CCD2, respectively. The Optical Path I can be used to implement an auto-focus with both a large range of auto-focus distances and low focus accuracy. The Optical Path II can be used to implement an
auto-focus with both a short range of auto-focus distances and high focus accuracy. The two optical paths are combined using a self-written autofocus-processing algorithm to realize an autofocusing microscope.
The simulation and experimental results show that compared to conventional optics-based autofocusing microscopes with biconvex lens, the proposed microscope system has a higher focusing accuracy. In addition, under the same focusing accuracy, the focusing times of the proposed microscope system using two optical paths are less than that of the proposed microscope system using a single optical path.
[1] W. Y. Hsu, C. S. Lee, P. J. Chen, N. T. Chen, F. Z. Chen, Z. R. Yu, C. H. Kuo, and C. H. Hwang,“Development of the fast astigmatic auto-focus microscope system,” Meas. Sci. Technol., vol. 20, pp.045902-1-045902-9, 2009.
[2] K. Campbell, Y. Fainman, and A. Groisman, “Pneumatically actuated adaptive lenses with millisecond response time,” Appl. Phys. Lett., vol. 91, pp. 171111-1-171111-3, 2007.
[3] C. S. Liu, S. S. Ko, and P. D. Lin, “Experimental characterization of high-performance miniature auto-focusing VCM actuator,” IEEE Trans. Magn., vol. 47, no. 4, pp. 738-745, 2011.
[4] C. S. Liu, P. D. Lin, P. H. Lin, S. S. Ke, Y. H. Chang, and J. B. Horng, “Design and characterization of miniature auto-focusing VCM actuator for cell phone camera applications,” IEEE Trans. Magn., vol. 45, no. 1, pp. 155-159, 2009.
[5] Y. Liron, Y. Paran, N. G. Zatorsky, B. Geiger, and Z. Kam, “Laser autofocusing system for high-resolution cell biological imaging,” J. Microsc.-Oxf., vol. 221, pp. 145-151, 2006.
[6] J. H. Lee, Y. S. Kim, S. R. Kim, I. H. Lee, and H. J. Pahk, “Real-time application of critical dimension measurement of TFT-LCD pattern using a newly proposed 2D image-processing algorithm,” Opt. Lasers Eng., vol. 46, pp. 558-569, 2008.
[7] S. L. Brazdilova and M. Kozubek, “Information content analysis in automated microscopy imaging using an adaptive autofocus algorithm for multimodal functions,” J. Microsc.-Oxf., vol. 236, pp. 194-202, 2009.
[8] S. Yazdanfar, K. B. Kenny, K. Tasimi, A. D. Corwin, E. L. Dixon, and R. J. Filkins, “Simple and robust image-based autofocusing for digital microscopy,” Opt. Express, vol. 16, pp. 8670-8677, 2008.
[9] C. H. Chen and T. L. Feng, “Fast 3D shape recovery of a rough mechanical component from real time passive autofocus system,” Int. J. Adv. Manuf. Technol., vol. 34, pp. 944–957, 2007.
[10] E. F. Wright, D. M. Wells, A. P. French, C Howells, and N. M Everitt, “A low-cost automated focusing system for time-lapse microscopy,” Meas. Sci. Technol. vol. 20, 027003-1- 027003-4, 2009.
[11] C. W. Chiu, P. C. P. Chao, and D.Y. Wu, “Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm,” IEEE Trans. Magn., vol. 43, pp. 2582-2584, 2007.
[12] H. Oku and M. Ishikawa, “High-speed autofocusing of a cell using diffraction patterns,” Opt. Express, vol. 14, pp. 3952-3960, 2006.
[13] P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt., vol. 47, pp. D176-D182, 2008.
[14] T. Kim and T. C. Poon, “Autofocusing in optical scanning holography,” Appl. Opt., vol. 48, pp. H153-H159, 2009.
[15] S. Lee, J. Y. Lee, W. Yang, and D. Y. Kim, “Autofocusing and edge detection schemes in cell volume measurements with quantitative phase microscopy,” Opt. Express, vol. 17, pp. 6476-6486, 2009.
[16] M. Moscaritolo, H. Jampel, F. Knezevich, and R. Zeimer, “An image based auto-focusing algorithm for digital fundus photography,” IEEE Trans. Med. Imag., vol. 28, pp. 1703-1707, 2009.
[17] K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics, vol. 2, pp. 311-314, 2008.
[18] C. Kwan, A. P. Snyder, R. P. Erickson, P. A. Smith, W. M. Maswadeh, B. Ayhan, J. L. Jensen, J. O. Jensen, and A. Tripathi, “Chemical agent detection using GC-IMS: a comparative study,” IEEE Sens. J., vol. 10, pp. 451-460, 2010.
[19] S. J. Abdullah, M. M. Ratnam, and Z. Samad, “Error-based autofocus system using image feedback in a liquid-filled diaphragm lens,” Opt. Eng., vol. 48, pp. 123602-1-123602-9, 2009.
[20] R. M. Wasserman, P. G. Gladnick, and K. W. Atherton, “Systems and methods for rapidly automatically focusing a machine vision inspection system,” U.S. Patent 7030351 B2, 2006.
[21] J. Jeon, I. Yoon, D. Kim, J. Lee, and J. Paik, “Fully digital auto-focusing system with automatic focusing region selection and point spread function estimation,” IEEE Trans. Magn., vol. 56, pp. 1204-1210, 2010.
[22] K. Koh, J. G. Kuk, B. Jin, W. Choiand, and N. I. Cho, “Autofocus method using dual aperture and color filters,” J. Electron. Imaging, vol. 20, pp. 033002-1-033002-6, 2011.
[23] M. Yamana, “Automatic focal-point sensing apparatus sensing high and low magnification,” U.S. Patent 5245173, 1993.
[24] D. K. Cohen, W. H. Gee, M. Ludeke, and J. Lewkowicz, “Automatic focus control: the astigmatic lens approach,” Appl. Opt., vol. 23, pp. 565-570, 1984.
[25] K. C. Fan, C. L. Chu, and J. I. Mou, “Development of a low-cost autofocusing probe for profile measurement,” Meas. Sci. Technol., vol. 12, pp. 2137-2146, 2001.
[26] Q. P. Li, F. Ding and P. Fang, “Flash CCD laser displacement sensor,” Electron. Lett., vol. 42, pp. 910-912, 2006.
[27] Y. Tanaka, T. Watanabe, K. Hamamoto, and H. Kinoshita, “Development of nanometer resolution focus detector in vacuum for extreme ultraviolet microscope,” Jpn. J. Appl. Phys., vol. 45, no. 9A, pp. 7163-7166, 2006.
[28] S. J. Lee and D. Y. Chang, “A laser sensor with multiple detectors for freeform surface digitization,” Int. J. Adv. Manuf. Technol., vol. 31, pp.1181-1190, 2007.
[29] Z. Li and K. Wu, “Autofocus system for space cameras,” Opt. Eng., vol. 44, pp. 053001-1-053001-5, 2005.
[30] H. G. Rhee, D. I. Kim, and Y. W. Lee, “Realization and performance evaluation of high speed autofocusing for direct laser lithography,” Rev. Sci. Instrum., vol. 80, pp. 073103-1-073103-5, 2009.
[31] Y. Nishio, “Optical displacement meter, optical displacement measuring method, optical displacement measuring program, computer-readable recording medium, and device that records the program,” U.S. Patent 7489410 B2, 2009.
[32] M. Kataoka and K. Nemoto, “Focusing servo device and focusing servo method,” U.S. Patent 7187630 B2, 2007.
[33] M. He, W. Zhang, and X. Zhang, “A displacement sensor of dual-light based on FPGA,” Optoelectron. Lett., vol. 3, pp. 294-298, 2007.
[34] K. H. Kim, S. Y. Lee, S. Kim, S. G. Jeong, “DNA microarray scanner with a DVD pick-up head,” Curr. Appl. Phys., vol. 8, pp. 687-691, 2008.
[35] J. Y. Lee, Y. H. Wang, L. J. Lai, Y. J. Lin, and Y. H. Chang, “Development of an auto-focus system based on the Moiré method,” Measurement, vol. 44, pp. 1793-1800, 2011.
[36] H. C. Chang, T. M. Shih, N. Z. Chen, N. W. Pu, “A microscope system based on bevel-axial method auto-focus,” Opt. Lasers Eng., vol. 47, pp. 547-551, 2009.
[37] C. Y. Chen, R. C. Hwang, and Y. J. Chen, “A passive auto-focus camera control system”, Appl. Soft. Comput., vol. 10, no. 1, pp.296-303, 2009.
[38] M. A. Bueno-Ibarra, J. Alvarez-Borrego, L. Acho, and M. C. Chavez-Sanchez, “Fast Autofocus Algorithm for Automated Microscopes,” Opt. Eng., vol. 44, pp. 063601-1-063601-8, 2005.
[39] S. Yousefi, M. Rahman, and N. Kehtarnavaz, “A NEW Auto-Focus Sharpness Function for Digital and Smart-Phone Cameras”, IEEE Trans. on Consum. Electron., vol. 57, no. 3, pp.1003-1009, 2011.
[40] S. Schaefer, S. A. Boehm, and K. J. Chau, “Automated, portable, low-cost bright-field and fluorescence microscope with autofocus and autoscanning capabilitie”, Appl. Opt., vol. 51, no. 14, pp.2581-2588, 2012.
[41] http://www.mathworks.com/
[42] http://www.lin.com.tw/menu/products/Measuring/2008_Measuring/apply_science/Interferometer.asp
[43] A. Tulsi, S. Vishal, S. M. Dalip, and S. Chandra, “High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cell”, Appl. Opt., vol. 50, no. 34, pp.6343-6351, 2011.
[44] http://www.nikon-instruments.com.cn/TechFiles/200807/291004455721.html
[45] A. Schick, “Confocal displacement sensor,” US Pattent, 7271919, 2007.
[46] 林佑儒,“疊紋自動對焦技術 Development of an auto-focus system by the moiré method,” 國立中央大學光機電工程研究所,碩士論文,2010。
[47] 賴律臻,“差動式疊紋自動對焦系統 Auto focus system based on differential technique and moiré method,” 國立中央大學光機電工程研究所,碩士論文,2011。
[48] 陳奇夆,“工程光學上課講義” 國立中央大學光機電工程研究所,2012。
[49] W. J. Smith, A. Simone, Modern Optical Engineering, 3rd ed., McGraw-Hill International Editions, 2001.
[50] http://wegudevice.com/index.html
[51] C. S. Liu, P. H. Hu, and Y. C. Lin, “Design and experimental validation of novel optics-based autofocusing microscope”, Appl. Phys. B, vol. 109, no. 2, pp.259-268, 2012.
[52] Y. Fujimoto, “Focus detecting device for an optical apparatus,” US Pattent, 6649893, 2003.
[53] K. C. Fan, “A non-contact automatic measurement for free-form surface profiles”, Computer Integrated Manufacturing Systems, vol. 10, no. 4, pp.277-285, 1997.
[54] G. Manneberg, S. Hertegard, and J. Liljencrantz, “Measurement of human vocal fold vibrations with laser triangulation”, Opt. Eng., vol. 40, no. 9, pp.2041-2044, 2001.
[55] J. Elazar, S. ˇSelmi´, M. Tomi´c, and M. Prokin, “A fibre-optic displacement sensor for a cyclotron environment based on a modified triangulation method”, J. Opt. A:Pure Appl. Opt., vol. 4, no. 6, pp.347-355, 2002.
[56] J. P. Peterson, and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces”, Appl. Opt, vol. 45, no. 20, pp.4916-4926, 2006.
[57] J. P. Peterson, and R. B. Peterson, “Laser triangulation for liquid film thickness measurements through multiple interfaces”, Appl. Opt, vol. 45, no. 20, pp.4916-4926, 2006.
[58] D. Braˇcun, V. Gruden, and J. Možina, “A method for surface quality assessment of die-
castings based on laser triangulation”, Meas. Sci. Technol., vol. 19, no. 4, pp. 045707-1- 045707-8, 2008.
[59] D. Ehlert, H. J. Horn, and R. Adamek, “Measuring crop biomass density by laser triangulation”, Comput. Electron. Agric., vol. 61, no. 2, pp.117-125, 2008.
[60] M. M. Klimanov, “Triangulating laser system for measurements and inspection of turbine blades”, Meas. Tech., vol. 52, no. 7, pp.725-731, 2009.
[61] A. J. Tuononen, “Laser triangulation to measure the carcass deflections of a rolling tire”, Meas. Sci. Technol., vol. 22, no. 12, pp.125304-1-125304-8, 2011.
[62] J. H. Wu, J. D. Wang, W. Fang, Y. P. Lee, Y. C. Shan, H. K. Kao, S. H. Ma, and J. A. Jiang, “Blind guidance system based on laser triangulation”, Opt. Eng., vol. 51, no. 5, pp.054302-1-054302-8, 2012.
[63] G. Bitelli, A. Simone, F. Girardi, and C. Lantieri, “Laser scanning on road pavements: a new approach for characterizing surface texture”, Sensors, vol. 12, no. 7, pp.9110-9128, 2012.
[64] 黃衍任,“自動光學檢測上課講義” 國立中央大學機械工程學系,2012。
[65] R. C. Gonzalez, R. E. Woods, Digital image processing, 3rd ed., Pearson/Prentice Hall, 2008.
[66] http://www.lin.com.tw/products/Scientific/sciinfo/CF160.htm
[67] E. Muka and N. Y. Woo, “Apparatus for stabilizing a laser beam,” European Patent 0229 825 B1, 1986.
[68] M. J. W. Rodwell, K. J. Weingarten, and D. M. Bloom, “Reduction of timing fluctuations in a mode-locked Nd:YAG laser by electronic feedback,” Opt. Lett., vol. 11, pp. 638-640, 1986.
[69] S. Nakamura, T. Maeda, and Y. Tsunoda, “Autofocusing effect due to wavelength change of diode lasers in an optical pickup,” Appl. Opt., vol. 26, pp. 2549-2553, 1987.
[70] D. W. Smith, “Reducing phase fluctuations in a coherent radiation beam using feedforward control,” U.S. Patent 4847477, 1989.
[71] I. A. Andronova and I. L Bershtein, “Suppression of fluctuations of the intensity of radiation emitted by semiconductor lasers,” Sov. J. Quantum Electron., vol. 21, pp. 616-618, 1991.
[72] H. Mizoguchi, Y. Amada, and N. Ito, “Laser device,” U.S. Patent 5535233, 1996.
[73] L. Wang, T. Tschudi, T. Halldórsson, and P. Pétursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng., vol. 39, no. 5, pp. 1629-1664, 2000.
[74] S. Gossler, M. M. Casey, A. Freise, et al., “Mode-cleaning and injection optics of the gravitational-wave detector GEO600,” Rev.Sci. Instrum., vol. 74, pp. 3787-3795, 2003.
[75] B. D. Maxson, “Systems and method for despeckling a laser light source,” U.S. Patent 0053476, 2010.
[76] J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett., vol. 29, no. 1, pp. 11-13, 2004.
[77] Z. Liao, T. Xing, G. Cheng, and W. Wumei, “Speckle reduction in laser projection display by modulating illumination light,” Proc. SPIE, vol. 6622, pp. 662229-1-662229-9, 2008.
[78] A. Furukawa, N. Ohse, Y. Sato, D. Imanishi, K. Wakabayashi, S. Ito, K. Tamamura, and S. Hirata, “Effective speckle reduction in laser projection displays,” Proc. SPIE, vol. 6911, pp. 69110T-1-69110T-7, 2008.
[79] J. I. Trisnadi, “Speckle contrast reduction in laser projection displays,” Proc. SPIE, vol. 4657, pp. 131-137, 2002.
[80] S. V. Egge, M. N. Akram, V. Kartashov, K. Welde, Z. Tong, and U. Ö. A. Aksnes “Sinusoidal rotating grating for speckle reduction in laser projectors: feasibility study,” Opt. Eng., vol. 50, no. 8, pp. 083202-1-083202-8, 2011.
[81] F. P. Shevlin, “Optical system and method,” U.S. Patent 20110102748, 2011.