| 研究生: |
王鵬華 Peng-Hua Wang |
|---|---|
| 論文名稱: |
提升SiO2@ZnIn2S4奈米核殼結構光觸媒光催化產氫研究 Improving Photocatalytic Hydrogen Productions based on SiO2@ZnIn2S4 Core-shell Particles |
| 指導教授: |
李岱洲
Tai-Chou Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | ZnIn2S4 、光觸媒產氫 、殼層結構 |
| 外文關鍵詞: | ZnIn2S4, Photocatalytic hydrogen production, Core-shell |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源危機深深影響著我們的社會和環境。尋找乾淨的替代能源成為當今重要且迫切的議題。與化石燃料相比,可再生能源有著對於環境友好且可永續發展的優勢。在可再生能源之中,氫能被視為最具潛力能源,因為氫氣燃燒過後只會產生水及能量。因此,發展可見光驅動的光觸媒水分解產氫至關重要。
過去的研究顯示將ZnIn2S4 (ZIS)可見光光觸媒包覆在具有二氧化矽外殼的金銀奈米粒子(Gold Silver-Nano Shell@ SiO2, GS-NS@SiO2) ,能夠藉由表面電漿共振效應有效提升產氫效率。由於GS-NS@SiO2不易合成,實驗以SiO2@ZIS作為主要研究重點,其原因是兩者的表面功能相同。我們若能從中理解ZIS反應機制,就能了解結構相關特性,從而優化產氫。
藉由改變硫代乙醯胺 (Thioacetamide, TAA)濃度及金屬前驅物的陰離子,發現可以調整其能隙值並且提升產氫。此外,研究顯示微調ZIS暴露面比例可以有效提升產氫,並提出合理的合成機制對其進行解釋。我們選擇了最佳產氫樣品,改變溫度及pH值兩大重要參數來探討其對產氫的影響。研究發現,在140 oC和pH = 3.45的條件下可以提高產氫效率。最後,本研究的目的是使SiO2 @ ZIS核層結構光觸媒將太陽能有效地轉化為氫能。
Energy crisis impacts our society and environment. It is urgent to find clean and renewable energies. Compared with fossil fuel, renewable energies are more environmentally friendly toward sustainable development. Among renewable sources, hydrogen has the biggest decarbonization potential , because it only produces water and energy after combustion. Therefore, the advances of visible-light-driven photocatalysts for water splitting is critical.
ZnIn2S4 (ZIS) is a visible-light-driven photocatalyst, being used in this research. Our previous studies revealed that the gold-silver nanoshells (GS-NS) with SiO2 buffer layer (GS-NS@SiO2) embedded in ZIS matrix exhibited a unique plasmonic-enhanced photocatalytic hydrogen production. Due to the difficulty of synthesizing GS-NS@SiO2, our research focused on the preparation of SiO2@ZIS, since the surface functionalities on SiO2 for both systems are the same. If we can understand the deposition mechanism of ZIS on SiO2, the structure-property relation can be realized. Thus, the hydrogen productions can be optimized.
By changing thioacetamide (TAA) concentration and the anions of metal salts in the precursor, it was found that energy band gap can be adjusted and hydrogen production efficiency can be improved. Furthermore, our research shows that delicate tuning the percentage of exposed facet can improve hydrogen production. A synthesis mechanism was proposed. Two important parameters, temperature and pH, were then varied to optimize hydrogen evolution rates. It shows that at 140 oC and pH=3.45 can improve hydrogen production. Finally, the purpose of this study is to effectively convert solar energy into hydrogen energy using SiO2@ZIS core-shell photocatalysts.
1. 經濟部能源局,「能源指標季報-能源供給」,2019。
2. 劉如熹、陳致融,「利用奈米金屬提高水分解產氫效率」,科學發展專題報導,2015. 508: p. 6.
3. IRENA, Hydrogen from renewable power: Technology outlook for the energy transition. 2018.
4. 經濟部能源局,「再生能源展望-氫能篇」,2018。
5. Akira Fujishima, Kenichi Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 37: p. 238.
6. Hui Wua, Design and Fabrication of an Albedo Insensitive Analog Sun Sensor. Procedia Engineering, 2011. 25: p. 527-530.
7. Min-Chih Li, Si-Ping Liu, Andrew C. Jamison, T. Randall Lee, Tai-Chou Lee, Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold–Silver Nanoshells. ACS Applied Materials & Interfaces, 2016. 8(14): p. 9152-9161.
8. 黃彥禎,「利用微波水熱法提升SiO2@ZnIn2S4 奈米光觸媒表面均質與結晶性其光催化產氫研究」,國立中央大學化學工程與材料工程學系,2018。
9. Jie Shen, Jiantao Zai, Yanping Yuan, Xuefeng Qian, 3D hierarchical ZnIn2S4: The preparation and photocatalytic properties on water splitting. International Journal of Hydrogen Energy, 2012. 37: p. 16986–16993.
10. Jinyan Zhao, Xiaoming Yan, Haitao Yu, Cocatalyst designing a binary noble-metal-free cocatalyst system consisting of ZnIn2S4 and In(OH)3 for efficient visible-light photocatalytic water splitting. RSC Advances, 2018. 8: p. 4979-4986.
11. Yang Pan, Guangming Zeng, Recent advances in synthesis, modification and photocatalytic applications of micro/nano-structured zinc indium sulfide. Chemical Engineering Journal, 2018. 354: p. 407-431.
12. Zhixin Chen, Yunhui He, Yi-Jun Xu, Microwave-assisted hydrothermal synthesis of marigold-like ZnIn2S4 microspheres and their visible light photocatalytic activity. Journal of Solid State Chemistry, 2012. 186: p. 247-254.
13. Kuochin Hsu, Taohsing Chen, Yawshyan Fu, Photocatalytic and optical characteristics of ZnIn2S4 microspheres. Materials Research Express, 2018. 5(11).
14. Xinglong Gou, Panwen Shen, Shape-Controlled Synthesis of Ternary Chalcogenide ZnIn2S4 and CuIn(S Se)2 Nano-Microstructures via Facile Solution Route.. Journal of the American Chemical Society, 2006: p. 7222-7229.
15. Kudo Akihiko, Tsuji Issei, Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting. Chemistry Letters, 2004. 33: p. 1534-1539.
16. Kudo Akihiko, Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. International Journal of Hydrogen Energy 2007. 32: p. 2673-2678.
17. Kai Zhang, Liejin Guo, Metal sulphide semiconductors for photocatalytic hydrogen production. Catalysis Science & Technology, 2013. 3(7).
18. Hongjian Yan, Jingying Shi, Can Li, Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. Journal of Catalysis, 2009. 266: p. 165-168.
19. Gratzel Michael, Photoelectrochemical cells Nature 2001. 414: p. 338.
20. Chihung Liao, Chaowei Huang, Jeffrey Wu, Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting. Catalysts, 2012. 2(4): p. 490-516.
21. Michael Coto, Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications. John Wiley and Sons 2018.
22. Anthony Bruce Murphy, Julie Anne Glasscock, Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 2006. 31: p. 1999-2017.
23. Kudo Akihiko, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev, 2009. 38: p. 253-278.
24. Jingrun Ran, Jun Zhang, Jiaguo Yu, Mietek Jaroniecc, Shi Zhang Qiao, Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev, 2014. 43: p. 7787-7812.
25. Kudo Akihiko, Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. 2004. 126: p. 13406-13413.
26. Shinchiro Fujita, Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts: Effects of preparation and reaction conditions. Applied Catalysis B: Enviromental 2016. 181: p. 818-824.
27. Shaohua Shen, Liang Zhao, Liejin Guo, ZnIn2S3+m (m=1-5, integer): A new series of visible-light-driven photocatalysts for splitting water to hydrogen. International Journal of Hydrogen Energy,, 2010. 35: p. 10148-10154.
28. Shaohua Shen, Liejin Guo, Microwave-assisted hydrothermal synthesis of transition-metal doped ZnIn2S4 and its photocatalytic activity for hydrogen evolution under visible light. Journal of Power Sources, 2011. 196: p. 10112-10119.
29. Dharani Praveen Kumar, Vipan Kumari, Shankar Muthukonda Venkatakrishnan, Shape dependence structural, optical and photocatalytic properties of TiO2 nanocrystals for enhanced hydrogen production via glycerol reforming. Solar Energy Materials and Solar Cells, 2017. 163: p. 113-119.
30. Nur Fajrina, Muhammad Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. International Journal of Hydrogen Energy, 2018.
31. Boudjemaa Amel, Photo-electrochemical characterization of porous material Fe-FSM-16. Application for hydrogen production. Materials Science in Semiconductor Processing,, 2013. 16: p. 838-844.
32. Boudjemaa Amel, Fe2O3 /carbon spheres for efficient photo-catalytic hydrogen production from water and under visible light irradiation. Solar Energy Materials and Solar Cells, 2015. 140: p. 405-411.
33. Hyacinth Mae G. Tambago, Rizalinda L. de Leon, Intrinsic Kinetic Modeling of Hydrogen Production by Photocatalytic Water Splitting Using Cadmium Zinc Sulfide Catalyst. International Journal of Chemical Engineering and Applications, 2015. 6: p. 220-227.
34. Kudo Akihiko, Photocatalytic H2 Evolution under Visible-Light Irradiation over Band Structure-Controlled (CuIn)xZn2(1-x)S2 Solid Solutions. J. Phys.Chem. B,, 2005. 109: p. 7323-7329.
35. Shaohua Shen, Liejin Guo, Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. Journal of Solid State Chemistry, 2011. 184: p. 2250–2256.
36. Yongjuan Chen, Zhaohui Li, Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance. Dalton Transactions, 2011. 40(11).
37. Bo Chai, Peng Zeng, Xiaohu Zhang, Xiaojing Liu, Template-Free Hydrothermal Synthesis of ZnIn2S4 Floriated Microsphere as an Efficient Photocatalyst for H2 Production under Visible-Light Irradiation. The Journal of Physical Chemistry C, 2011. 115(13): p. 6149-6155.
38. Xianluo Hu, Jingming Gong, Quan Li, Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process. Crystal Growth and Design, 2007. 12: p. 2444-2448.
39. Shaohua Shen, Liejin Guo, Cetyltrimethylammoniumbromide(CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2008. 33(17): p. 4501-4510.
40. Herbert Giesche, Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. Journal of the European Ceramic Society,, 1994. 14: p. 189-204.
41. Werner Stöber, Controlled growth of monodisperse silica spheres in the micron size range. 1968.
42. Kim E. Sapsford, Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem. Rev, 2013. 113: p. 1904-2047.
43. Baojun Wang, Surface modification of nanosilica with 3mercaptopropyltrimethoxysilane: Experiment and theooretical study on the surface interaction. Chemical Physics Letters, 2014. 591: p. 227-232.
44. Radha Narayanan, Synthesis and Characterization of Colloidal-Supported Metal Nanoparticles as Potential Intermediate Nanocatalysts. The Journal of Physical Chemistry C, 2010. 114: p. 6356-6362.
45. Hanprasopwattana A, Morphology of titania coatings on silica gel. Catalysis Letters,1997. 45: p. 165-175.
46. Qiao Zhang, Yadong Yin, Core-shell Nanostructured Catalysts. Acc. Chem. Res, 2013. 46: p. 1816-1824.
47. Xiaoming Sun, Yadong Li, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angew. Chem., Int. Ed, 2004: p. 597-601.
48. Ghosh Chaudhuri, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev., 2012. 112: p. 2373-2433.
49. Honggang Fu, Hierarchical Core–Shell Carbon Nanofiber@ZnIn2S4 Composites for Enhanced Hydrogen Evolution Performance. ACS Applied Materials and Interfaces 2014. 6: p. 13841-13849.
50. Lin Ye, Zhenhai Wen, ZnIn2S4 nanosheets decorating WO3 nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation. International Journal of Hydrogen Energy, 2019.
51. Mengjie Geng, Hierarchical ZnIn2S4: A promising cocatalyst to boost visible-light-driven photocatalytic hydrogen evolution of In(OH)3. International Journal of Hydrogen Energy, 2019.
52. Xinlei Guo, Jianqiang Yu, An Efficient ZnIn2S4@CuInS2 Core-Shell p-n Heterojunction to Boost Visible-Light Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C, 2020.
53. Jörg Polte, Fundamental growth principles of colloidal metal nanoparticles – a new perspective. CrystEngComm, 2015. 17: p. 6809–6830.
54. Tan, C.G., Production of monodisperse colloidal silica spheres: Effect of temperature. Journal of Colloid and Interface Science, 1987. 118: p. 290-293.
55. Liang Shi, Peiqun Yin, Yumei Dai, Synthesis and photocatalytic performance of ZnIn2S4 nanotubes and nanowires. Langmuir, 2013. 29(41): p. 12818-22.
56. Feng Gu, Solution-Phase Synthesis of Spherical Zinc Sulfide Nanostructures. Langmuir, 2005.
57. Oswald M. Peeters, Camiel J. De Ranter, Kinetics and mechanisms of the reaction between thioacetamide and lead(II), cadmium(II), and cobalt(II) ions in acetate buffered solution. Journal of the Chemical Society, Perkin Transactions 2, 1978: p. 23.
58. Rosenthal, D, A Study of the Mechanism and Intermediates in the Precipitation of Cations with Thioacetamide. Journal of the American Chemical Society, 1960. 82: p. 4169-4174.
59. Zhixin Chen, Yunhui He, Xianzhi Fu, Low-Temperature and Template-Free Synthesis of ZnIn2S4 Microspheres. Inorganic Chemistry, 2008. 47: p. 9766-9772.
60. Phil Ahrenkiel, The influence of reaction media on CdIn2S4 and ZnIn2S4 nanocrystallite formation and growth of mesocrystal structures. CrystEngComm, 2015. 17: p. 8492-8499.
61. David, L.V. , Error bars in experimental biology. J Cell Biol, 2007. 177: p. 7-11.
62. Yanwei Zhua, Xinnian Xia, In-situ Hydrogenation Engineering of ZnIn2S4 for Promoted Visible-light Water Splitting. Applied Catalysis B: Environmental., 2018.
63. Xueqing Gong, Annabella Selloni, Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B, 2015. 109: p. 19560-19562.
64. Huagui Yang, Huiming Cheng, Gaoqing Lu, Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008. 453: p. 638-641.
65. Kaia Ernits, Mare Altosaar, Anion Effect of Zinc Source on Chemically Deposited ZnS(O,OH) Films. Hindawi Publishing Corporation., 2009: p. 5.
66. Youseung Rim, Sanhoon Bae, Yang Yang, Hexaaqua Metal Complexes for Low-Temperature Formation of Fully Metal Oxide Thin-Film Transistors. Chem. Mater. , 2015. 27: p. 5808-5812.
67. Ralph Person, Hard and Soft Acids and Bases. J. Am. Chem. Soc. , 1963. 85: p. 3533-3539.
68. Xiaowei Shi, Ultrathin ZnIn2S4 Nanosheets with Active (110) Facet Exposure and Efficient Charge Separation for Cocatalyst Free Photocatalytic Hydrogen Evolution.2020.
69. Grob L., Modern Practice of Gas Chromatography. John Wiley & Sons, 1977: p. 1977.
70. Markus S Eschner, Online Comprehensive Two-Dimensional Characterization of Puff-byPuff Resolved Cigarette Smoke by Hyphenation of Fast Gas Chromatography to Single-Photon Ionization Time-of-Flight Mass Spectrometry: Quantification of Hazardous Volatile Organic Compounds. ACS Analytical Chemistry, 2011. 87: p. 6619-6627.
71. 蔡蘊明,「氣相層析儀簡介」,1999。
72. 陳陵援,「儀器分析」,科學技術叢書三民出版,2010。
73. K. Lance Kelly, George C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107: p. 668-677.
74. Kottmann, J.P., Plasmon resonances of silver nanowires with a nonregular cross section. Physical Review B, 2001. 64: p. 235402.
75. Cushing, S.K., Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. Journal of the American Chemical Society, 2012. 134(36): p. 15033-15041.
76. Kudo Akihiko, Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. Journal of the American Chemical Society, 2004,126(41)
77. Pochang Lin, Taichou Lee, Enhanced photocatalytic hydrogen production over In-rich (Ag–In–Zn)S particles. International Journal of Hydrogen Energy, 2013, 38(20), 8254–8262.