跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅偉倫
Wei-lun Luo
論文名稱: 具自動風聲噪音偵測之適應性除噪系統
An adaptive noise reduction system with automatic wind noise detection
指導教授: 吳炤民
Chao-Min Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 102
中文關鍵詞: 噪音除噪風聲噪音梅爾頻譜倒參數語音活動偵測短時譜熵風聲分類TMS320C6713
外文關鍵詞: noise reduction, wind noise, mel frequency cepstrum coefficients, voice activity detection, short time entropy, wind classifier, TMS320C6713
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的是發展針對風聲噪音下的風聲除噪系統。當風聲吹過麥克風時,會產生巨大的噪音,影響收音品質,降低訊雜比。此系統包括兩個部分:一是計算輸入之梅爾頻譜倒參數 (Mel Frequency Cepstrum Coefficients),再利用機器學習中的分類樹來自動判斷當前風切聲噪音存在與否,再改變適應性濾波器的參數進行除噪;二是計算輸入的短時譜熵 (Short Time Entropy) 來偵測麥克風接收到的語音活動,若偵測不到語音,則消除噪音,以增加輸出的聽覺舒適度和理解度。為了驗證系統能有效去除不同的風聲,使用了真實的和模擬的風聲作為噪音來源。並與目前對於噪音消除表現較佳的演算法最小控制遞迴平均法 (Minima Controlled Recursive Averaging, MCRA) 和正反向最小控制遞迴平均法 (MCRA-FB) 比較。輸入訊號從訊雜比為10dB到-10dB。使用語音品質客觀評量方法 (Perceptual Evaluation of Speech Quality, PESQ) 評量最後結果。
    首先利用MATLAB (The MathWorks, Natick, Massachusetts, USA)之軟體模擬本驗算法,在訊雜比為0dB 時,PESQ評分可以比未除噪提高 0.35,MCRA-FB只能較未除噪提高0.05。風噪聲判斷準確率為93%,語句判斷率準確率為96%。本研究也實現在TMS320C6713開發板 (Texas Instruments, Dallas, Texas, USA)。當使用line in輸入在高訊雜比 (6dB) 時,PESQ評分可以比未除噪提高 0.25,而MCRA演算法應用在此不能有PESQ分數的提升。若是使用適應性指向麥克風收音,在低訊雜比 (-10dB) 時,可以比未除噪提高0.35的PESQ分數,MCRA法只能提高0.2。本研究在電腦模擬和硬體實現上,可以有效去除風聲噪音,語句之間的風聲噪音也可以完全刪除,較目前常用的演算法如MCRA方法等等表現優良。


    As we have known in our daily life, a great noise on the microphone would be produced and signal-to-noise ratio (SNR) of the perceived speech and its quality would be lowered when wind passes through the microphone. The purpose of this study was to develop an adaptive wind noise reduction system. Our system has two parts: firstly we applied the decision tree machine learning algorithm to detect existence of wind noise with the mel frequency cepstrum coefficients (MFCC) used as input features, and parameters of adaptive filter would be changed to reduce the wind noise. Then we calculated the input short time entropy to detect the voice activity in order to make the output speech signal more comfortable and intelligible. This approach would reduce the wind noise if it detected the input signals with no speech activity. To verify if our system could reduce different wind noise properly, we applied real and simulated wind noise as the noise sources with SNR set from 10 to -10dB, and compared our results with two common noise reduction algorithms: minima controlled recursive averaging (MCRA) and Forward-Backward MCRA (MCRA-FB). Then the objective perceptual evaluation of speech quality (PESQ) approach was used to evaluate the quality of the results.
    In this study, the MATLAB (The MathWorks, Natick, Massachusetts, USA) program was first used to implement the wind noise reduction system. Our results showed that the PESQ score was increased by 0.35 when compared to the original signal with 0dB SNR real wind noise signal while MCRA-FB algorithm could only increase by 0.05. At the same time, the speech hit rate was 96%, and the accuracy of the wind noise detection rate is 93%. We further implemented the wind noise reduction system on the DSP starter kit (DSK), TMS320C6713 (Texas Instruments, Dallas, Texas, USA) and compared to the results of MCRA. Our results indicated when the line in was used as the signal input, the PESQ score could be increased by 0.25 at high SNR (6dB) signal while the results of MCRA algorithm could not improve the PESQ score. However, when the adaptive directional microphone (ADM) was used as the signal input, the PESQ score of our result was 0.35 higher than that of the original (no noise reduction) system at low SNR (-10dB) signal while the result of MCRA algorithm only improved by 0.2. These results show that our wind noise reduction system could reduce the wind noise properly and achieve better performance than the MCRA algorithm.

    目錄 第一章 緒論 1 1.1 研究動機 1 1.2 風聲噪音 2 1.3 除噪演算法 3 1.4 文獻回顧 6 1.5 研究目的 9 1.5 論文架構 9 第二章 風聲除噪系統架構與介紹 11 2.1 風聲噪音模型 11 2.2 風噪聲除噪相關研究 12 第三章 風聲除噪系統架構 26 3.1 系統架構 26 3.2 風聲分類器 27 3.3 適應性濾波器 31 3.4 語句偵測 36 第四章 軟體模擬及其結果與討論 42 4.1 實驗語料與噪音語料 42 4.2 風聲除噪系統的實現語實驗流程 46 4.3 風聲除噪系統模擬結果與比較 48 4.4 語句判斷系統的實現與結果比較 55 4.5 風聲判斷系統的實現與結果比較 52 第五章 硬體實現方法及其結果與討論 57 5.1 TMS320C6713 開發板與麥克風電路 57 5.2 Line-In 實驗 59 5.3 麥克風收音實驗 63 5.4 其他指標評量 72 5.5 硬體實現結果討論 73 第六章 結論與未來展望 76 6.1 結論 76 6.2 未來展望 77 參考資料 79

    參考資料
    Benyassine, A., Shlomot, E., Su, H.-Y., Massaloux, D., Lamblin, C., & Petit, J.-P. (1997). "ITU-T Recommendation G. 729 Annex B: a silence compression scheme for use with G. 729 optimized for V. 70 digital simultaneous voice and data applications," IEEE, Communications Magazine, 35(9), 64-73.
    Boll, S. F. (1979). "Suppression of acoustic noise in speech using spectral subtraction," IEEE Transactions on Acoustics, Speech and Signal Processing, 27(2), 113-120.
    Chung, K. (2004). "Challenges and recent developments in hearing aids part I. Speech understanding in noise, microphone technologies and noise reduction algorithms," Trends in Amplification, 8(3), 83-124.
    Chung, K., Mongeau, L., & McKibben, N. (2009). "Wind noise in hearing aids with directional and omnidirectional microphones: polar characteristics of behind-the-ear hearing aids," The Journal of the Acoustical Society of America, 125(4), 2243-2259.
    Cohen, I., & Berdugo, B. (2002). "Noise estimation by minima controlled recursive averaging for robust speech enhancement," IEEE, Signal Processing Letters, 9(1), 12-15.
    Doblinger, G. (1995). "Computationally efficient speech enhancement by spectral minima tracking in subbands," Power, 1, 2.

    Ephraim, Y., & Malah, D. (1985). "Speech enhancement using a minimum mean-square error log-spectral amplitude estimator," IEEE Transactions on Acoustics, Speech and Signal Processing, 33(2), 443-445.
    Esch, T., & Vary, P. (2009). "Efficient musical noise suppression for speech enhancement system," IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. ICASSP 2009., Taipei, Taiwan, 4409-4412
    Friedl, M. A., & Brodley, C. E. (1997). "Decision tree classification of land cover from remotely sensed data," Remote sensing of environment, 61(3), 399-409.
    Gannot, S., Burshtein, D., & Weinstein, E. (2001). "Signal enhancement using beamforming and nonstationarity with applications to speech," IEEE Transactions on Signal Processing, 49(8), 1614-1626.
    Hu, Y., & Loizou, P. C. (2004). "Speech enhancement based on wavelet thresholding the multitaper spectrum," IEEE Transactions on Speech and Audio Processing, 12(1), 59-67.
    Hu, Y., & Loizou, P. C. (2008). "Evaluation of objective quality measures for speech enhancement," IEEE Transactions on Audio, Speech, and Language Processing, 16(1), 229-238.
    Huang, X., Acero, A., Hon, H. W., & Foreword By-Reddy, R. (2001). ''Spoken language processing: A guide to theory, algorithm, and system development,'' Prentice Hall PTR., Saddle River, New Jersey, USA
    Jackson, I. R., Kendrick, P., Cox, T. J., Fazenda, B. M., & Li, F. F. (2014). "Perception and automatic detection of wind-induced microphone noise," The Journal of the Acoustical Society of America, 136(3), 1176-1186.
    King, B., & Atlas, L. (2008). "Coherent modulation comb filtering for enhancing speech in wind noise," International Workshop on Acoustice Echo and Noise Control., Seattle, WA, USA, 14-17
    Kokkinakis, K., & Cox, C. (2014). "Reducing the impact of wind noise on cochlear implant processors with two microphones," The Journal of the Acoustical Society of America, 135(5), EL219-EL225.
    Liaw, A., & Wiener, M. (2002). "Classification and regression by randomForest," R news, 2(3), 18-22.
    Martin, R. (2001). "Noise power spectral density estimation based on optimal smoothing and minimum statistics," IEEE Transactions on Speech and Audio Processing, 9(5), 504-512.
    Marzinzik, M., & Kollmeier, B. (2002). "Speech pause detection for noise spectrum estimation by tracking power envelope dynamics," IEEE Transactions on Speech and Audio Processing, 10(2), 109-118.
    Mitchell, T. M. (1997). ''Machine learning,'' McGraw Hill, New York, USA, 57-58.
    Moeng, C.-H., Poulos, G. S., & LeMone, M. A. (2003). "Cooperative Atmosphere-Surface Exchange Study-1999," Journal of Atmospheric Sciences, 60, 2429-2429.
    Morgan, S., & Raspet, R. (1991). "Analysis of wind noise measurements," The Journal of the Acoustical Society of America, 89(4B), 1953-1953.
    Murata, N., Ikeda, S., & Ziehe, A. (2001). "An approach to blind source separation based on temporal structure of speech signals," Neurocomputing, 41(1), 1-24.
    Nelke, C. M., Nawroth, N., Jeub, M., Beaugeant, C., & Vary, P. (2012). "Single microphone wind noise reduction using techniques of artificial bandwidth extension," 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 2328-2332
    Nemer, E., & Leblanc, W. (2009). "Single-microphone wind noise reduction by adaptive postfiltering," 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, USA, 177-180
    Orfanidis, S. J. (1988). Optimum signal processing: an introduction: Macmillan publishing company., New York, USA
    Rangachari, S., & Loizou, P. C. (2006). "A noise-estimation algorithm for highly non-stationary environments," Speech communication, 48(2), 220-231.
    Schmidt, M. N., Larsen, J., & Hsiao, F.-T. (2007). "Wind noise reduction using non-negative sparse coding," 2007 IEEE Workshop on Machine Learning for Signal Processing., Thessaloniki, Greece, 431-436
    Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., Moonen, M., van Dijk, B., . . . Wouters, J. (2007). "Speech understanding in background noise with the two-microphone adaptive beamformer BEAM™ in the Nucleus Freedom™ cochlear implant system," Ear and Hearing, 28(1), 62-72.
    Strasberg, M. (1988). "Dimensional analysis of windscreen noise," The Journal of the Acoustical Society of America, 83(2), 544-548.
    Van den Berg, G. (2006). "Wind-induced noise in a screened microphone," The Journal of the Acoustical Society of America, 119(2), 824-833.
    Wu, B.-F., & Wang, K.-C. (2005). "Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments," IEEE Transactions on Speech and Audio Processing, 13(5), 762-775.

    Yu, J., Raspet, R., Webster, J., & Abbott, J. (2011). "Wind noise measured at the ground surface," The Journal of the Acoustical Society of America, 129(2), 622-632.

    衛生福利部社會及家庭署網站 (2013) 2015年10月26號存取
    http://www.sfaa.gov.tw/SFAA/default.aspx

    行政院內政部統計處網站 (2014) 2015年10月26號存取
    http://www.moi.gov.tw/stat/index.aspx

    科林聽力團隊 (2011). “助聽器學,” 科林儀器股份有限公司, 台灣, 新北市。

    黃銘緯 (2005). “台灣地區噪音下漢語語音聽辨測試,” 碩士論文, 國立台北護理學院聽語障礙科學研究所。

    洪千焙 (2011). “正向反向最小控制遞迴平均雜訊預估於語音增強之研究,”碩士論文, 南台科技大學電機工程研究所。

    許詠傑 (2009). “以軟體為基準的助聽器模擬平台之發展-噪音消除,” 碩士論文, 國立中央大學電機工程研究所。

    沈宗穎 (2011). “以軟體為基準的助聽器模擬平台之發展-模擬 Unitron、Widex和Oticon噪音消除策略,” 碩士論文, 國立中央大學 電機工程研究所。

    劉庭安 (2012). “運用TMS320C6713開發可自動情境分類之雙麥克 風除噪系統,” 碩士論文, 國立中央大學電機工程研究所。

    楊彥明 (2014). “運用TMS320C6713開發可自動匹配之雙麥克風
    除噪系統,” 碩士論文, 國立中央大學電機工程研究所。

    陳政鋒 (2015). “運用TMS320C6713開發可語音增強之雙麥克風
    除噪系統,” 碩士論文, 國立中央大學電機工程研究所。

    鄭詠聰, 林., 湯士滄,朱唯廉. (2010). “風強度對於語音辨識的影響
    以凌陽晶片為例,” 生物醫學工程科技研討會。

    賴旭謙. (2012). “應用聲源定位與感知計算來決策以相干性為基準之雙麥克風噪音抑制演算法與其實現” 碩士論文, 國立成功大學電機工程研究所。

    QR CODE
    :::