跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林能億
Neng-yi Lin
論文名稱: 無鉛銲料與擴散阻障層於熱電材料之推力測試研究
Evaluation of shear strength on Pb-free solder/diffusion barrier/Bi2Te3 thermoelectric system
指導教授: 吳子嘉
Albert T. Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 無鉛銲料擴散阻障層熱電材料推力測試界面反應碲化鉍
外文關鍵詞: Lead-free solder, Diffusion barrier, Termoelectric material, Ball shear test, Interfacial reaction, Bi2Te3
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碲化鉍熱電材料(Bi2Te3)是常溫下具有最高熱電轉換效率之熱電材料,其與銅導線之間是以無鉛銲料進行迴銲接合形成熱電模組,然而此迴銲作業會在無鉛銲料與熱電材料之界面處生成多孔且脆的SnTe介金屬化合物,於界面處鍍製鎳擴散阻障層可抑制此化合物的生成。本研究選用p型之碲化鉍熱電材料((Bi0.2Sb0.8)2Te3)、SAC305與純Sn銲料及無電鍍方式鍍製鎳擴散阻障層。以百格測試方法對鎳層鍍製於p-BST後之附著程度進行測試,及使用推力測試機台對銲料與熱電材料反應生成之SnTe介金屬化合物進行機械性質測試,並觀察鎳擴散阻障層對系統機械性質的影響。
    實驗結果顯示,p-BST表面之粗糙程度隨蝕刻時間的增加而上升,鎳層在蝕刻120秒之條件有最佳之附著結果,而隨著蝕刻時間的增加,p-BST表面會有孔洞的生成,將對附著能力產生影響。推力測試後,SAC305/p-BST系統之破壞皆由基材處發生,而Sn/p-BST系統則是發生在SnTe介金屬化合物內。另外,不論迴銲時間的增加或是多次迴銲條件下,Sn/p-BST系統生成極厚的SnTe介金屬化合物是降低系統機械強度的主要因素;Sn/Ni-P/p-BST系統則在多次迴銲後維持相同的機械強度,且鎳擴散阻障層加入SAC305/p-BST系統後可以改變測試後的破壞行為,由p-BST處轉變成銲料內,因此鎳擴散阻障層不僅能抑制SnTe介金屬化合物的生成,也同時能維持系統之機械性質。


    Bismuth-Telluride material is an effective thermoelectric material and has the best device efficiency at room temperature. Since lead-free solder is applied in the thermoelectric module, the interfacial reaction forms a thick and porous intermetallic SnTe layer. A Ni diffusion barrier deposited at the interfaces can effectively prevent the formation of SnTe. The thermoelectric material and solder used in this research are (Bi0.2Sb0.8)2Te3 (abbreviated to p-BST) and SAC305, pure Sn. The Ni diffusion barrier was deposited by electroless plating method. This research performed peeling test on the adhesion between Ni layer and p-BST, and shear test on the SnTe intermetallic compounds which form at the interfaces of solders and p-BST, also compared with the systems coating Ni diffusion barrier.
    The results show that the surface roughness of p-BST increase with the increasing etching time and the adhesion ability of Ni layer has the best adhesion ability after etching for 120 seconds. With increasing etching time, voids will form at p-BST surface and that result in poor adhesion ability. After shear test, the failure occurred in the p-BST region for the SAC305/p-BST systems, but the failure occurred inside SnTe for the Sn/p-BST systems. On the other hand, the increase of the SnTe thickness is the main factor which decrease the shear strength after prolonging reaction time or multiple reflow. The shear strength maintain at the same value for the Sn/Ni-P/p-BST systems. Ni diffusion barrier also alter the failure mode as coated between SAC305 and p-BST systems. These results show that Ni diffusion barrier not only inhibit the formation of SnTe but also prevent the degradation of solders and p-BST systems.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1-1前言 1 1-2熱電材料簡介 1 1-2-1熱電材料發展 2 1-2-2熱電優值 3 1-2-3碲化鉍系熱電材料 5 1-2-4熱電模組 5 1-3無鉛銲料與熱電材料之界面反應文獻回顧 6 1-3-1 Sn/Te反應偶 7 1-3-2 SnCu/Te反應偶 8 1-3-3 Sn-Ag/Te反應偶 9 1-3-4 Sn/(Bi0.25Sb0.75)2Te3系統 9 1-4 擴散阻障層 11 1-4-1無電鍍鎳磷 11 1-4-2無電鍍鎳擴散阻障層與熱電材料界面反應 13 1-5 推力測試及其文獻回顧 15 1-6 研究動機 20 第二章 實驗方法 21 2-1材料製備 21 2-1-1 p-BST熱電材料 21 2-1-2推力測試試片製作 22 2-1-3銲料 22 2-2無電鍍鎳磷 24 2-3百格測試 24 2-4界面反應 25 2-5推力測試 26 2-6試片分析 27 2-6-1原子力顯微鏡(AFM) 27 2-6-2掃描式電子顯微鏡(SEM) 28 2-6-3電子微探分析儀(EPMA) 29 2-6-4 X射線繞射儀(XRD) 29 第三章 實驗結果與討論 30 3-1鎳擴散阻障層於p-BST之附著性測試研究 30 3-2銲料與p-BST之機械強度研究 33 3-2-1界面反應 33 3-2-2推力測試及破壞行為探討 38 3-2-3不同SnTe厚度之推力測試及破壞行為探討 42 3-2-4不同推力速度之推力測試及破壞行為探討 43 3-2-5 SnTe介金屬化合物之硬度量測 46 3-3銲料及鎳擴散阻障層與p-BST之機械強度研究 48 3-3-1 Sn/p-BST界面反應 48 3-3-2 Sn/Ni-P/p-BST界面反應 51 3-3-3推力測試 53 3-3-4破壞行為探討 55 3-3-5 SAC305/Ni-P/p-BST系統 59 第四章 結論 60 參考文獻 62

    1. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, “Bulk nanostructured thermoelectric materials : current research and future prospects”, Energy & Environmental Science, 2 466 (2009).
    2. S. Michel, S. Diliberto, N. Stein, B. Bolle, and C. Boulanger, “ Characterisation of electroplated Bi2(Te1-xSex)3 alloys”, Journal of Solid State Electrochemistry, 12 : 95 (2008).
    3. 莊東漢, 葉威廷, 黃振東, 和 謝慧霖, “熱電模組接合技術及其挑戰Bonding technologies for thermoelectric module and the challenges”, 工業材料雜誌322期 (2013).
    4. S.Y. Chang, Y.C. Huang, and Y.M. Lin, “Mechanical property and fracture behavior characterizations of 96.5 Sn-3.0 Ag-0.5 Cu solder joints”, Journal of Alloys and Compounds, 490 508 (2010).
    5. K.S. Kim, S.H. Huh, and K. Suganuma, “Effect of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints”, Journal of Alloys and Compounds 352 226 (2003).
    6. A. Sharif, M.N. Islam, and Y.C. Chan, “ Interfacial reactions of BGA Sn–3.5%Ag–0.5%Cu and Sn–3.5%Ag solders during high-temperature aging with Ni/Au metallization”, Materials Science and Engineering: B, 113 184 (2004).
    7. C.M.L. Wu, C.M.T. Law, D.Q. Yu, and L. Wang, “The wettability and microstructure of Sn-Zn-RE alloys”, Journal of Electronic Materials, 32 2 (2003).
    8. M.G. Cho, S.K. Kang, D.-Y. Shih, and H.M. Lee, “Effects of minor additions of Zn on interfacial reactions of Sn-Ag-Cu and Sn-Cu solders with various Cu substrates during thermal aging,” Journal of Electronic Materials, 36 11 (2007).
    9. J.M. Song, Y.R. Liu, Y. S. Lai, Y. T. Chiu, and N.C. Lee, “Influence of trace alloying element on the ball impact reliability of SnAgCu solder joints”, Microelectronics Reliability, 52 180 (2012).
    10. S.W. Chen, and C.N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couples”, Scripta Materialia, 56 97 (2007).
    11. C.N. Liao, and C.H. Lee, “Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys”, Journal of Materials Research, 23 12 (2008).
    12. C.N. Liao, and Y.C. Huang, “Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium”, Journal of Materials Research, 25 2 (2010).
    13. S.W. Chen, H.J. Wu, C.Y. Wu, C.F. Chang, and C.Y. Chen, “Reaction evolution and alternating layer formation in Sn/(Bi0.25Sb0.75)2Te3 and Sn/Sb2Te3 couples”, Journal of Alloys and Compounds, 553 106 (2013).
    14. Y.D. Jeon, K.W. Paik, K.S. Bok, W.S. Choi, and C.L.Cho, “Studies of electroless nickel under bump metallurgy - solder interfacial reactions and their effects on flip chip solder joint reliability”, Journal of Electronic Materials, 31 5 (2002).
    15. L.C. Lo, and A.T. Wu, “Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing”, Journal of Electronic Materials,41 12 (2012).
    16. C.Y. Ko, and A.T. Wu, “Evaluation of diffusion barrier between pure Sn and Te”, Jourmal of Electronic Materials, 41 12 (2012).
    17. F. Stepniak , “Solder flip chips employing electroless nickel: An evaluation of reliability and cost”, Advances in Electronic Packaging, 353 19 (1997).
    18. J.W. Yoon, and S.B. Jung, “Effect of isothermal aging on the interfacial reactions between Sn-0.4Cu solder and Cu substrate with or without ENIG plating layer,” Surface and Coatings Technology, 200 4440 (2006).
    19. H. Mu, J. Seok, and R.Y. Lin, “Nickel thin film coatings on steels with electroless plating and sputter deposition”, Journal of the Electrochemical Society, 150 (2) C67 (2003).
    20. Mona, A. Kumar, and Z. Chen, “Influence of phosphorus content on the interfacial microstructure between Sn-3.5Ag solder and electroless Ni-P metallization on Cu substrate”, Transactions on Advanced Packaging, 30 1 (2007).
    21. H. Okamoto, “Ni-P(nickel-phosphorus)”, Journal of Phase Equilibria and Diffusion, 31 2 (2010).
    22. Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, “Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials”, Applied Physics Letters, 92 101910 (2008).
    23. T.Y. Lin, C.N. Liao, and A.T. Wu, “Evaluation of diffusion barrier between lead-free solder systems and thermoelectric materials”, Journal of Eelctronic Materials, 41 1 (2012).
    24. P.Y. Chien, C.H. Yeh, H.H. Hsu, and A.T. Wu, “Polarity effect in a Sn3Ag0.5Cu/bismuth telluride thermoelectric system”, Journal of Eelctronic Materials, 43 1 (2014).
    25. Y.J. Chen, C.K. Chung, C.R. Yang, and C.R. Kao, “Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics”, Microelectronics Reliability, 53 47 (2013).
    26. J.W. Yoon, B.I. Noh, and S.B. Jung, “Mechanical reliability of Sn-Ag BGA solder joints with various electroless Ni-P and Ni-B plating layers”, Transactions on Components and Packaging Technologies, 33 1 (2010).

    27. Y.S. Lai, H.C. Chang, and C.L. Yeh, “Evaluation of solder joint strengths under ball impact test”, Microelectronics Reliability, 47 2179 (2007).
    28. D.Y.R. Chong, F.X. Che, J.H.L. Pang, Kellin Ng, J.Y.N. Tan, and P.T.H. Low, “Drop impact reliability testing for lead-free and lead-based soldered IC packages”, Microelectronics Reliability, 46 1160 (2006).
    29. C.F. Tseng, and J.G. Duh, “Correlation between microstructure evolution and mechanical strength in the Sn-3.0Ag-0.5Cu/ENEPIG solder joint”, Materials Science & Engineering A, 580 169 (2013).
    30. C.B. Lee, S.B. Jung, Y.E. Shin, and C.C. Shur, “Effect of isothermal aging on ball shear strength in BGA joints with Sn–3.5Ag–0.75Cu solder”, Materials Transactions, 43 8 1858 (2002).
    31. S. W. Chen, S. W. Lee, and M. C. Yip, "Mechanical properties and intermetallic compound formation at the Sn/Ni and Sn-0.7wt.%Cu/Ni joints," Journal of Electronic Materials, 32 11 (2003).
    32. L.C. Tsao, “ Microstructural characterization and mechanical properties of microplasma oxidized TiO2/Ti joints soldered using Sn3.5Ag4Ti(Ce) active filler”, Journal of Materials Science: Materials in Electronics , 25:233 (2014).
    33. K.N. Tu, A.M. Gausk, and M. Li, “Physics and materials challenges for lead-free solders”, Journal of Applied Physics, 93 3 (2003).
    34. 周雅文, “火花電漿燒結技術於熱電材料開發之應用”, 工業材料雜誌287期 (2010).
    35. M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner and T. Kessel, “Chapter 13 - Challenges and opportunities for spark plasma sintering: A key technology for a new generation of materials”, Sintering Applications, ISBN 978-953-51-0974-7 (2013).

    36. J. Y. Sun, D.H. Hong, K.O. Ahn, S.H. Park, J.Y. Park, and Y.H. Kim, “Adhesion study between electroless seed layers and build-up dielectric film substrates”, Journal of The Electrochemical Society, 160 (3) D107 (2013).
    37. Z. Liu, and W. Gao, “Electroless nickel plating on AZ91 Mg alloy substrate”, Surface and Coatings Technology, 200 5087 (2006).
    38. X. Huang, S.-W. R. Lee, C.C. Yan, and S. Hui, “Characterization and analysis on the solder ball shear testing conditions”, 2001 Electronic Components and Technology Conference.
    39. J. W. Kim, Y.C. Lee, S.S. Ha, and S.B. Jung, “Failure behaviors of BGA solder joints under various loading conditions of high-speed shear test”, Journal of Materials Science : Materials in Electronics, 20:17 (2009).
    40. JESD22-B117 “Test method B117 : Solder ball shear”, Solid State Technology Association (2000).
    41. W.H. Zhong, Y.C. Chan, M.O. Alam, B.Y. Wu, and J.F. Guan, “Effect of multiple reflow processes on the reliability of ball grid array (BGA) solder joints”, Journal of Alloys and Compounds, 414 123 (2006).
    42. H. Fallahi, M.S. Nurulakmal, A. Fallahi Arezodar, and J. Abdullah “Effect of iron and indium on IMC formation and mechanical properties of lead-free solder” Materials Science and Engineering A, 553 22 (2012).
    43. D.G. Kim, J.W. Kim, and S.B. Jung, “ Effect of aging conditions on interfacial reaction and mechanical joint strength between Sn–3.0Ag–0.5Cu solder and Ni–P UBM”, Materials Science and Engineering B, 121 204 (2005).
    44. A. Sharif, Y.C. Chan, and H.W. Zhong, “Effect of multiple reflows on mechanical strength of theinterface formed between Sn–Zn–Bi solder and Au/Ni/Cubond pad”, Journal of Materials Research, 22 1 (2007).

    45. J.M. Kim, M.H. Jeong, S. Yoo, C.W. Lee, and Y.B. Park, “Effects of surface finishes and loading speeds on shear strength of Sn–3.0Ag–0.5Cu solder joints”, Microelectronic. Engineering, 89 55 (2012).
    46. G.Y. Jang, J.W. Lee, and J.G. Duh, “The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump”, Journal of Electronic Materials, 33 10 (2004).
    47. H. Okamoto, “Ni-Sn (Nickel-Tin)”, Journal of Phase Equilibria and Diffusion, 29 3 (2008).

    QR CODE
    :::