| 研究生: |
任正隆 Chang-Lung Jen |
|---|---|
| 論文名稱: |
吊車系統利用視覺回授之滑動模式控制 Sliding-Mode Control of Overhead Crane Systems Using Visual Feedback |
| 指導教授: |
徐國鎧
Kuo-Kai Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 滑動模式控制 、滑動平面 、欠驅動 、視覺回授 、抗搖晃 |
| 外文關鍵詞: | sliding-mode control, sliding surface, underactu |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對吊車系統(Overhead Crane System),提出基於滑動模式控制並利用視覺回授之定位與抗搖晃控制。由於吊車系統本身具有欠驅動(Underactuated)、複雜之非線性動態、難以模型化之參數誤差以及摩擦力等因素,造成控制之精確度與穩定性不足。另外,很難以較少的驅動器,同時實現軌跡追蹤控制快速定位及最小的負載晃動的性能。本文中提出一耦合台車動態(Trolley Dynamics)與負載搖晃動態(Load-swing Dynamics)之滑動平面(Sliding Surface),利用滑動模式(Sliding-Mode)控制器的設計,將負載搖晃之動態引入阻尼(Damping)效果以消除擺動;另外,所提出的滑動模式控制並不需精確動態模型,即可提供足夠的強健性以克服複雜之非線性動態、負載變化與摩擦力等非理想因素,確保精確的定位達成期望之控制性能,並基於視覺回授架構所具有的量測、辨識、位置追蹤等特性,提升吊車絕對位置之參考輸入軌跡追蹤能力。模擬與實驗結果皆顯示出本文所提出之控制法則在貨物運送過程中,可確保漸進穩定之滑動平面、精確之台車位置追蹤以及優異之抗搖晃效果。
In this thesis, we present an anti-swing control scheme based on the sliding-mode control (SMC) for an overhead crane system using visual feedback. Since the overhead crane system is underactuated and highly nonlinear, the system performance is usually deteriorated by the system unmodelled-parameter errors and friction. On the other hand, to minimize load-swing angle and maximize the speed of load transfer are hard to consider and implement simultaneously by using fewer actuators. A sliding surface coupled with trolley and load-swing dynamics is designed to stabilize the load-swing dynamics by injecting the damping effect into the dynamics of the crane system. The proposed control law provides the robustness to unknown load variation and friction without an accurate dynamical model. Using visual feedback can improve the tracking capacity of absolute position. Simulations and Experiments show that the proposed control scheme ensures the asymptotically stability of sliding surface, precise trolley positioning, and good performance of the load-swing dynamics during the load transfer.
[1] W. Wang, J. Yi, D. Zhao and D. Liu, “Design of a stable sliding-mode
controller for a class of second-order underactuated systems,” IEE Proc. -
Control Theory App. , vol. 151, no. 6, pp. 683-690, 2004.
[2] G. Bartonlini, A. Pisano and E. Usai, “Second-order sliding-mode
control of container cranes,” Automatica, vol. 38, no. 10, pp. 1783-1790,
2002.
[3] Sakawa and Y. Shindo, “Optimal control of container cranes,” Automatica,
vol. 18, no. 3, pp. 257-266, 1982.
[4] M.A. Karkoub and M. Zribi, “Modelling and energy based nonlinear control
of crane lifters,” IEE Proc.-Control Theory Application, vol. 149, no. 3,
pp. 209-216 , 2002.
[5] Y. Fang, W. E. Dixon, D.M. Dawson and E. Zergeroglu, “Nonlinear coupling
control laws for an underactuated overhead crane system,” IEEE/ASME
Transaction on Mechatron, vol.8, no. 3, pp. 418-423, 2003.
[6] A. Giua, C. Seatzu and G. Usai, “Observer-controller design for
cranes via Lyapunov equivalence,” Automatica, vol. 35, no. 4, pp. 669-
678, 1999.
[7] G. Corriga, A. Giua and G. Usai, “An implicit gain-scheduling controller
for cranes,” IEEE Trans. Contr. Syst., vol. 6, no. 1, pp. 15-20, 1998.
[8] A. Piazzi and A. Visioli, “Optimal dynamic inversion based control
of an overhead crane,” IEE Proc-Control Theory Application, vol. 149, no.
5, pp. 405-411, 2002.
[9] J.J. Hamalinen, A. Marttinen, L. Baharova and J. Virkkunen, “Optimal path
planning for a trolley crane fast and smooth transfer of load,” IEE Proc.-
Control Theory Application, vol. 142, no. 1, pp. 51-57, 1995.
[10] B. d’Andrea and J. M. Coron, “Exponential stabilization of an overhead
crane with flexible cable via a back-stepping approach,” Automatica,
vol. 36, no. 4, pp. 587-593, 2000.
[11] X. Zhang, B. Gao and H. Chen, “Nonlinear controller for a gantry crane
based on partial feedback linearization,” Proceedings of the 2005 IEEE
International Conference on Control and Automations, pp. 1074–1078.
[12] H. H. Lee, “Modeling and control of three-dimensional overhead crane,”
ASME Transactions, Journal of Dynamic Systems, Measurement, and Control,
vol. 120, pp. 471–476, 1998.
[13] H.-H. Lee, “A new motion-planning scheme for overhead cranes with high-
speed hoisting,” ASME Transactions, Journal of Dynamic Systems,
Measurement, and Control, vol. 126, pp. 359–364, 2004.
[14] H. H. Lee, “Motion planning for three-dimensional overhead cranes with
high-speed load hoisting,” Int. J. Control, vol. 78, no. 12, pp. 875-
886, 2005.
[15] H. H. Lee, “A new design approach for the anti-swing trajectory control
of overhead cranes with high-speed hosting,” Int. J. Control, vol. 77,
no. 10, pp. 931-940, 2004.
[16] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction
and its compensation in precise, position controlled mechanisms,” IEEE
Trans. Industry Application, vol. 28, no. 6, pp. 1392-1398, 1992.
[17] R. M. Hischorn and G. Miller, “Control of Nonlinear system with
friction,” IEEE Trans. Contr. Tech., vol. 28, no. 6, pp. 588-595, 1992.
[18] M. Iwasaki, H. Takei and N. Matsui, “GMDH-Based modeling and feedforward
compensation for nonlinear fiction in table systems,” IEEE Transactions
on Industrial Electronics, vol. 50, no. 6, pp.1172-1178, 2003.
[19] T. Shen, K. Tamura and H. Kaminaga, “Robust nonlinear control of
parametric uncertain systems with unknown friction and its application to
pneumatic control value,” Journal of Dynamic System, Measurement, and
Control, vol. 122, no. 2, pp. 257-262, 2000.
[20] T. Matsuo, R. Yoshino, H. Suemitsu, and K. Nakano, “Nominal performance
recovery by PID+Q controller and its application to antisway control of
crane lifter with visual feedback,” IEEE Tran. Contr. Sys. Tech., vol.
12, no. 1, pp.156-166, 2004.
[21] T. Matsuo and K. Nakano, “Robust stabilization of closed-loop systems by
PID+Q controller,” Int. J. Control, vol. 70, no. 4, pp. 631-650, 1998.
[22] A. C. Sanderson, and L. E. Weiss, “Image-based visual servo control
using relational graph error signals,” Proceedings of the IEEE
International Conference on Robotics and Automation, pp. 1074-1077, 1980.
[23] S. Hutchinson, G. Hager and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robotics Automat., vol. 12, no.5, pp. 651–670,
Oct. 1996.
[24] M. Reyhanoglu, A. Schaft, N. H. McClamroch and I. Kolmanovsky, “Dynamics
and control of a class of underactuated mechanical systems,” IEEE Tran.
Automatic Control, vol. 44, no. 9, pp.1663-1671, 1999.
[25] F. Bullo, N. E. Leonard and A. D. Lewis, “Controllability and motion
algorithms for underactuated Lagrangian systems on Lie Groups,” IEEE
Tran. Automatic Control, vol. 45, no. 8, pp. 1437-1454, 2000.
[26] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled
trajectory planning in underactuated mechanical systems,” IEEE Tran.
Robotics and Automation, vol. 17, no. 4, pp. 402-412, 2001.
[27] Z. Sun, S. S. Ge and T.H Lee, “Stabilization of underactued mechanical
systems: a non-regular backstepping approach,” Int. J. Control, vol. 74,
no. 11, pp. 1045-1051, 2001.
[28] J. Á. Acosta, R. Ortega, A. Astolfi and A. D. Mahindrakar,
“Interconnection and Damping Assignment Passivity-Based Control of
Mechanical Systems With Underactuation Degree One,” IEEE Tran. Automatic
Control, vol. 50, no. 12, pp.1936-1955, 2005.
[29] A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, “Constructive Tool for
Orbital Stabilization of Underactuated Nonlinear Systems: Virtual
Constraints Approach,” IEEE Tran. Automatic Control, vol. 50, no. 8,
pp.1164-1176, 2005.
[30] R. Jain, R. Kasturi and B. G.. Schunck, MachineVision, McGraw-Hall, Inc.,
1995.
[31] H. K. Khalil, Nonlinear systems, 3rd Edition, Prentice Hall, 2002.