跳到主要內容

簡易檢索 / 詳目顯示

研究生: 溫士鋒
Shi-Feng Wen
論文名稱: 添加微量液體對不同密度顆粒於旋轉鼓內分離機制的影響
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 82
中文關鍵詞: 旋轉鼓液體含量分離強度安息角流場速度
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以類二維的精密旋轉鼓為實驗設備,並以實驗的方式探討添加微量液體含量及旋轉鼓轉速快慢,對不同密度顆粒在旋轉鼓中分離機制的影響。運用高解析及高速攝影機搭配影像分析及粒子追蹤的方法,分析及量測分離強度、安息角(Angle of Repose)、速度場變化等影響分離機制的重要指標。實驗結果顯示添加微量液體含量的多寡與轉速的快慢,會使混合的現象呈現較佳,也代表此兩項參數對於密度分離機制有顯著的影響;隨著無因次液體含量增加,顆粒體間的液橋隨之增厚,平均架橋數也跟著增多,顆粒間彼此吸附力量增加,因此會形成較大的安息角,並抑制分離效應;而當轉速增加時,重顆粒平均流動速度變快,轉速的提升代表外界供給系統的能量變大,因此重顆粒能有較大的動能與較快的速度,也使得間隙液體對速度的影響慢慢變小。實驗結果亦發現最終分離強度會隨著安息角變大而產生線性遞減的關係且無關於轉速及微量液體含量;本研究也試著將過去尺寸效應的數據結果與本研究密度效應的結果相互比較,結果顯示安息角與最終分離強度仍是維持線性遞減的關係。


    The density-induced granular segregation phenomenon of wet granular materials was experimentally studied in a quasi-2D rotating drum. The motions of the granular materials were recorded by a high-speed camera. Image processing technology and particle tracking method were employed to measure the segregation intensity, repose angle and the velocities of heavy particles. The effects of liquid content and rotation speed on segregation index, angle of repose, and velocity field in the rotating drum were investigated and discussed in this paper. The experimental results indicate that the liquid content and rotation speed have significant influences on density-induced granular segregation. The segregation intensity is mitigated with the increase of liquid content because of the stronger cohesive force between particles. It also shows that segregation intensity is reduced with the increasing of rotation speed. The segregation index is demonstrated to be decreased with the increase of the repose angle of wet granular materials, regardless of the addition of liquid content, liquid viscosity, rotation speed, density effect and size effect.

    摘要 i Abstract ii 目錄 iii 附表目錄 vi 附圖目錄 vii 符號說明 ix 第一章 緒論 1 1-1前言 1 1-2研究目的 2 1-3論文架構 3 第二章 基礎理論 4 2-1粒子流的特性 4 2-2二維旋轉鼓簡介 4 2-2-1旋轉鼓的應用 4 2-2-2 旋轉鼓內運動型態 5 2-2旋轉鼓中的分離機制 6 2-3影響分離的因素 7 2-3-1 粒子的粒徑差異 7 2-3-2粒子的密度差異 9 2-3-3乾溼粒子的差異 12 2-3-4顆粒體間的液橋現象 14 第三章 實驗方法 17 3-1實驗設備 17 3-2實驗原理與方法 20 3-2-1實驗參數及原理 20 3-2-2影像處理簡介 21 3-2-3分離指標 23 3-2-4安息角的量測 24 3-2-4速度場的量測 24 3-3實驗流程 25 3-3-1實驗配置 25 3-3-2實驗步驟 25 3-4誤差分析 28 第四章 結果分析與討論 30 4-1 間隙液體含量對不同密度顆粒流動性質之探討 30 4-1-1 間隙液體含量對分離強度之影響 30 4-1-2 間隙液體對安息角之影響 32 4-1-3 安息角與最終分離強度之關係 32 4-1-4 間隙液體對流動速度之影響 33 4-1-5 粒子結合數對最終分離強度之關係 34 第五章 結論 36 參考文獻 38 附表 41 附圖 43

    1. Ennis, B.J., Green, J., and Davies, R., “The legacy of neglect in the U.S.,” Chem. Eng. Prog., Vol. 90, pp. 32-43, 1994.
    2. Shamlon, P.A., “Handling of Bulk Solids: Theory and Practice,” Butterworth, pp.19 3, 1998.
    3. Campbell, C.S., “Rapid granular flows,” Annu. Rev. Flu
    id Mech., Vol. 22, pp. 57-92, 1990.4.Jaeger, H.M., and Na
    gel, S.R., “Physics of the Granular State,” Sci., Vol. 25
    5, pp. 1523-1531, 1992.
    5. Henein, H., Brimacomble, J.K., and Watkinson, A.P.,
    “Experimental study of transverse 37 bed motion in rotary kilns,” Metallurgy Trans. B, Vol. 14, pp. 191-205, 1983.
    6. Rajchenbach, J., “Flow in powders: from discrete avalanches to continuous regime,” Phys. Rev. Lett., Vol. 65, pp. 2221-2224, 1990.
    7. Mellmann, J., “The transverse motion of solids in rotating cylinders-forms of motion and transition behavi
    or,” Powder Technol., Vol 118, pp. 251-270, 2001.
    8. Rosato, A., Strandburg, K.J., Prinz, F., and Swendsen, R.H., “Why the Brazil nuts are on top: size segregation of particulate matter by shaking,” Phys. Rev. Lett., Vol. 58, pp. 1038-1040, 1987.
    9. Knight, J. B., Jaeger, H. M., and Nagel, S. R., “Vibra
    tion-induced size separation in granular media: The conve
    ction connection,” Phys. Rev. Lett., Vol. 92, 114301, 199
    3.
    10. Duran, J., Mazozi, T., Clement, E., and Rajchenbach, J., “Size segregation in a two-dimensional sandpile: Conv
    ection and arching effects,” Phys. Rev. E, Vol. 50, pp. 5138–5141, 1994.
    11. Dury, C. M., and Ristow, G. H., “Competition of mix
    ing and segregation in rotating cylinders,” Phys. Fluid, Vol. 11, pp. 1387-1394, 1999.
    12. Jain, N., Ottino, J. M., and Lueptow, R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granular Matter, Vol. 7, pp.69-81, 2005.
    13. Pohlman, N. A., Severson, B. L., Ottino, J. M., and Lueptow, R. M., “Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation,” Phys. Rev. E, Vol. 73, 031304, 2006.
    14. Ulrich, S., Schroter, M., and Swinney H. L.,“Influe
    nce of friction on granular segregation,” Phys.Rev. E, V
    ol. 76, 042301, 2007.
    15. Dziugys, A., and Navakas, R., “The role of friction in mixing and segregation of granular material,” Granular Matter, Vol. 11, pp. 403-416, 2009.
    16. Liao, C.C., Hsiau, S.S., Tsai, T. H., and Tai, C. H., “Segregation to mixing in wet granular matter under vibration,” Chem. Eng. Sci., Vol. 65, pp.1109-1119, 2010.
    17. Ristow G.H., “Particle mass segregation in a two-dimensional rotating drum,” Eur. Phys. Lett., Vol.28, pp. 97-101, 1994.
    18. Huerta, D. A., and Ruiz-Suarez, J. C., “Vibration-induced granular segregation: A phenomenon driven by three mechanisms,” Phys. Rev. Lett., Vol. 96, pp.219-226, 2004.
    19. Yang, W. L., and Hsiau, S.S., “The effect of liquid viscosity on sheared granular flows,” Chem. Eng. Sci., Vol. 61, pp. 6085-6095, 2006.
    20. Klein, M., Tsai, L. L., Rosen, M. S., Pavlin, T., Candela, D., and Walworth, R. L., “Interstitial gas and density segregation of vertically vibrated granular media,” Phys. Rev. E, Vol. 74, 010301, 2006.
    21. Shi, Q. F., Sun, G., Hou, M., and Lu, K. Q., “Density-driven segregation in vertically binary granular mixture,” Phys. Rev. E, Vol. 75, 061302, 2007.
    22. Sanfratello, L., and Fukushima, E., “Experimental studies of density segregation in the 3D rotating cylin
    der and the absence of banding,” Granular Matter, Vol.11 pp. 73-78, 2009.
    23. Sanchez1, I., Gutiérrez, G., Zuriguel, I. and Maza, D., “Sinking of light intruders in a shaken granular bed
    ,” Phys. Rev. E, Vol. 81, 062301, 2010.
    24. Pereira, G.G., Pucilowski S., Liffman K., and Cleary P.W., “Streak patterns in binary granular media in a rotating drum,” Appl. Math. Model., Vol. 35, pp. 1638-1646, 2011.
    25. Tripathi, A., and Khakhar, D. V., “Density difference
    -driven segregation in a dense granular flow,” J. Fluid Mech. Vol.717, pp. 643-669, 2013.
    26. Liao,C. C.,Hsiau,S.S., Nien,H. C., “Density-driven spontaneous streak segregation patterns in a thin rotat
    ing drum, ”Phys. Rev. E., Vol. 89, pp. 062204: 1-7, 2014.
    27. Albert, R., Albert, I., Hombaker, D., Schiffer, P., and Barabasi, A. L., “Maximum angle of stability in wet and dry spherical granular media,” Phys. Rev. E, Vol. 56, pp. 6271-6274, 1997.
    28. Rennie, P. R., Chen, X. D., Hargreaves, C., and Mack
    ereth, A. R.,“A study of the cohesion of dairy powders, ”J. Food. Eng. 39, 277-284.1999.
    29. Fraysse, N., Thome, H., and Petit, L., “Humidity effe
    cts on the stability of a sandpile,” Eur. Phys. J. B, Vol
    .11, pp. 615-619, 1999.
    30. Nase, S. T., Vargas, W. L., Abatan, A. A., and McCart
    hy, J. J., “Discrete characterization tools for cohesive granular material,” Powder Technol., Vol. 116, pp. 214-223, 2001.
    31. Jain, K., Shi, D. L., and McCarthy, J. J., “Discrete characterization of cohesion in gas-solid flows,” Powder Tech., Vol. 146, pp. 160-167, 2002.
    32. Hsiau, S. S., and Yang, S. C., “Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect on liquid bridges,” Chem. Eng. Sci., Vol. 58, pp. 339-351, 2003.
    33. Li, H. M., and McCarthy, J. J., “Controlling cohesive particle mixing and segregation,” Phys. Rev. Lett., Vol. 90, pp. 18430: 1-4, 2003.
    34. Kohonen, M. M., Geromichalos, D., Scheel, M., Schie
    rb, C., and Herminghausb, S., “On capillary bridges in wet granular materials,” Phys. A, Vol. 339, pp. 7-15, 2004.
    35. Li, H. M., and McCarthy J. J., “Phase diagrams for cohesive particle mixing and segregation,” Phys. Rev. E, Vol.71, pp. 021305: 1-8, 2005.
    36. Liao, C. C., Hsiau, S. S., Tsai, T. H. and Tai, C. H., 2010, “Segregation to Mixing in Wet Granular Matter under Vibration,” Chem. Eng. Sci., Vol. 65, pp.1109-1116.
    37. Pietsch, W., "Size enlargement by agglomeration,"Sa
    lle, Sauerlander Eds, pp. 33-37, 1990.
    38. Fisher, R. A., “On the capillary forces in an ideal soil,” J. Agric. Sci., Vol. 16, pp. 492-505, 1926.
    39. Lian, G., Thornton, C., and Adams, M. J., “Discrete particle simulation of agglomerate impact coalescence,” Chem. Eng. Sci., Vol. 53, pp. 3381-3391, 1998.
    40. Mikami, T., Kamiya, H., and Horio, M., “Numerical simulation of cohesive powder behavior in a fluidized bed,” Chem. Eng. Sci.., Vol. 53, pp. 1927-1940, 1998.
    41. Adams, M. J., and Perchard, V., “The cohesive forces between partilces with interstitial liquid,” Inst. Chem. Engng Symp., Vol. 91, pp. 147-160, 1985.
    42. Danckwerts, P. V., “The definition and measurement of some characteristic of mixtures,” Appl. Sci. Res., Vol. 3, pp. 279-296, 1952.
    43. Chou, S.H., Liao, C.C., Hsiau, S.S., “An experimental study on the effect of liquid content and viscosity on particle segregation in a rotating drum,” Powder Technol., Vol 201, pp. 266-272,2010.
    44. Hsiau, S. S., Liao, C. C., Tai, C. H., Wang, C. Y., “The dynamics of wet granular matter under a vertical vibration bed,” Granular Matt., Vol. 15, pp.437-446, 20
    13.

    QR CODE
    :::