| 研究生: |
魏敏芝 Min-chih Wei |
|---|---|
| 論文名稱: |
以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究 Investigation of the growth mechanism for titania nanotube on glass substrate by anodization |
| 指導教授: |
陳志臣
Jyh-chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 二氧化鈦奈米管 、薄膜 、濺鍍 、光電化學產氫 、陽極處理 |
| 外文關鍵詞: | photo-electrochemical hydrogen generation, sputtering, films, anodization, TiO2 nanotube |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦奈米管結構具有較大的比表面積、較高的表面活性與氣體感測特性,可被應用在光電化學產氫、光伏電池、光觸媒和氣體感測等領域,但大部分研究皆在鈦箔片上製備,使二氧化鈦奈米管應用大受限制。本研究利用射頻磁控濺鍍沉積鈦薄膜於玻璃基材上,放置含有氟化銨、水與乙醇之電解液中,固定50V電壓進行陽極處理製備高度有序之二氧化鈦奈米管結構。在不同陽極處理時間下,觀察陽極處理之電流密度變化、表面與橫截面型態以釐清其生長機制;而電解液中不同的氟化銨與水含量會影響陽極處理過程中電化學蝕刻(場致氧化和場致溶解)與化學溶解作用,受上述共同作用的結果可自組裝生長二氧化鈦奈米管陣列。本研究最佳參數:於1公升乙二醇電解液中,添加3克氟化銨與30克水,可製備出管長最長且高度有序之二氧化鈦奈米管陣列,並製作成光電極,應用在半導體光電化學產氫領域中。
The TiO2 nanotube arrays have large surface area, high surface activity and high sensitivity which are important for many applications such as photoelectron chemical hydrogen generation, photovoltaic cell, photocatalysis and gas sensing. However, most of these arrays have been prepared on Ti foil, which limits potential of TiO2 nanotube applications. In this study titanium films were deposited on a glass substrate using radio frequency (RF) magnetron sputtering and anodized in an electrolyte solution containing NH4F, water and ethylene glycol (EG) to form highly ordered TiO2 nanotubular structures while keeping the anodization potential set at 50 V. The variation of the current density during the anodization process and the surface and cross-section morphologies for different anodization times was used to examine the growth mechanism. The structure of the self-organized TiO2 nanotube array was significantly affected by the NH4F and water contents due to competition between the electrochemical etching (field-assisted oxidation and dissolution) and chemical dissolution of the electrochemical reaction during the anodization process. When the electrolyte was fixed to be 1 L along with the ethylene glycol, the results showed that the longest highly ordered TiO2 nanotube array was grown in the electrolyte with 3 g NH4F and 30 g water, and that is used as a photoelectrode for application in photo-electrochemical hydrogen generation.
1. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications solar energy mater”, Solar Cells, Vol.90, pp.2011-2075, 2006.
2. K.S. Raja, V.K. Mahajan, M. Misra, “Determination of photo conversion efficiency of nanotubular titanium”, Journal of Power Sources, Vol.159, pp.1258-1265, 2006.
3. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, “Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis”, Nano Letters, Vol.7, pp. 2356-2364, 2007.
4. J.H. Park, S. Kim, A.J. Bard, “Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting”, Nano Letters, Vol.6, pp.24-28, 2006.
5. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes, “p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation”, Nano Letters, Vol.8, pp.1906-1911, 2008.
6. N.K. Allam, C.A. Grimes, “Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays”, Solar Energy Materials and Solar Cells, Vol.92, pp.1468-1475, 2008.
7. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.S. Choi, C.A. Grimes, “Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photo-electrochemistry”, Journal of Chemical Physics C, Vol.113, pp. 6327-6359, 2009.
8. N.K. Allam, C.A. Grimes, “Effect of rapid infrared annealing on the photoelectrochemical properties of anodically fabricated TiO2 nanotube arrays”, Journal of Chemical Physics C, Vol.113, pp.7996-7999, 2009.
9. 胡啟章,電化學原理與方法,初版,五南書局,台北市,民國九十一年。
10. 王介光,「溫度不敏感性之電動力學行為於毛細管區域電泳」,國立中央大學化學工程與材料工程研究所,碩士論文,民國93年。
11. V. Zwilling, M. Aucouturier, E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media”, Electrochimica Acta, Vol.45, pp.921-929, 1999.
12. D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, “Vertically oriented titania nanotubes prepared by anodic oxidation on Si substrates”, IEEE Transactions on Nanotechnology, Vol.7, pp.131-134, 2008.
13. G.K. Mor, O.K. Varghese, “Fabrication of tapered, conical-shaped titania nanotubes”, Journal of Materials Research, Vol.18, pp.2588-2593, 2003.
14. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, “Enhanced photocleavage of water using titania nanotube arrays”, Nano Letters, Vol.5, pp.191-195, 2005.
15. S.H. Kang, J.Y. Kim, H.S. Kim, Y.E. Sung, “Formation and mechanistic study of self-ordered TiO2 nanotubes on Ti substrate”, Journal of Industrial and Engineering Chemistry, Vol.14, pp.52-59, 2006.
16. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.A. Grimes, “Anodic growth of highly ordered TiO2 nanotube arrays to 134 ?m in length”, Journal of Chemical Physics B, Vol.110, pp.16179-16184, 2008.
17. G.K. Mor, O.K. Varghese, M. Paulose, C.A. Grimes, “Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films”, Advanced Functional Materials, Vol.15, pp.1291-1296, 2005.
18. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, “Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells”, Nano Letters, Vol.6, pp.215-218, 2006.
19. D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, “Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method”, Materials Letters, Vol.62, pp.775-779, 2008.
20. H. Zheng, A.Z. Sadek, M. Breedon, D. Yao, K. Latham, J.du Plessis, K.Z. Kourosh, “Fast formation of thick and transparent titania nanotubular films from sputtered Ti”, Electrochemistry Communications, Vol.11, pp.1308-1311, 2009.
21. 謝孟偉,「二氧化鈦奈米管之研究」,國立中央大學材料科學與工程研究所,碩士論文,民國98年。
22. G.S. Chen, C.C. Lee, H. Niu, W. Huang, R. Jann, T. Schütte, “Sputter deposition of titanium monoxide and dioxide thin films with controlled properties using optical emission spectroscopy”, Thin Solid Films, Vol.516, pp.8473-8478, 2008.
23. T. Mehdi, P.B. Legrand, J.P. Dauchot, M. Wautelet, M. Hecq, “Optical emission diagnostics of an rf magnetron sputtering discharge”, Spectrochimica Acta, Vol.48, pp. 1023-1033, 1993.
24. M.Z. Hu, P. Lai, M.S. Bhuiyan, C. Tsouris, B. Gu, M.P. Paranthaman, J. Gabitto, L. Harrison, “Synthesis and characterization of anodized titanium-oxide nanotube arrays”, Journal of Materials Science, Vol.44, pp.2820-2827, 2009.
25. A. Valota, D.J. LeClere, T. Hashimoto, P. Skeldon, G.E. Thompson, S. Berger, J. Kunze, P. Schmuki, “The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte”, Nanotechnology, Vol.19, pp.355701-335707, 2008.
26. 宋國輝,「太陽光電產氫反應器中MnxTI1-xO2薄膜電極之研究」,國立中央大學材料科學與工程研究所,碩士論文,民國96年。
27. Joint Committee for Powder Diffraction Standards (JCPDS), Card No. 46-1088【SnO2】, 29-1361【TiO】, 21-1272【A-TiO2】.
28. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edition, Prentice Hall, New Jersey , 2001.
29. L. Sun, S. Zhang, X.W. Sun, X. He, “Effect of electric field strength on the length of anodized titania nanotube arrays”, Journal of Electroanalytical Chemistry, Vol.637, pp.6-12, 2009.
30. J.M. Macak, P. Schmuki, “Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes”, Electrochimica Acta, Vol.52, pp.1258-1264, 2006.
31. 皇冠達,「電滲流流場分析與離子濃度分佈探討」,國立成功大學工程科學研究所,碩士論文,民國93年。
32. Y.X. Tang, J. Tao, H.J. Tao, T. Wu, L. Wang, Y.Y. Zhang, Z.L. Li, X.L. Tiag, “Fabrication and characterization for transparent electrodes of TiO2 nanotube arrays on fluorine-doped tin oxide-coated glass”, Physical Chemistry Chemical Physics, Vol.24, pp.1120-1126, 2008.