| 研究生: |
胡廷韋 Ting-Wei Hu |
|---|---|
| 論文名稱: |
Realization and Characterization of a Lumped-Element Josephson Parametric Amplifier Realization and Characterization of a Lumped-Element Josephson Parametric Amplifier |
| 指導教授: | 陳永富 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 約瑟夫參數放大器 、超導電路 、微波電路 |
| 外文關鍵詞: | Josephson parametric amplifier, Superconducting circuit, Microwave circuit |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出並成功設計了集總式版本的約瑟夫森參量放大器(JPA),並進行了相關量測以驗證其性能。相比傳統的λ/4共振腔版本,所設計Lumped-element JPA顯著擴展了其頻寬,達到約20倍的提升,顯示出其在實際應用中的潛力。透過理論推導,我們確定了JPA設計的參數範圍,並驗證了關於JPA操作的基本表現,提出了新的設計目標與操作頻率範圍(pQ ∼ 5)。透過實際製作出並量測所設計的元件,我們發現本研究所設計的元件在附加噪聲和飽和功率方面仍有優化空間,未來的研究將集中於通過設計排除損失機制並藉由加入SQUID陣列來提升飽和功率。
This research proposes and successfully designs a lumped-element version of the Josephson Parametric Amplifier (JPA) and conducts relevant measurements to verify its performance. Compared to the traditional λ/4 resonator version, the designed lumped-element JPA significantly expands its bandwidth, achieving about a 20-fold increase, demonstrating its potential in practical applications. Through theoretical derivation, we determined the parameter range for JPA design and verified the basic performance of JPA operation, proposing new design goals and operational frequency range (pQe ∼ 5). Through the actual fabrication and measurement of the designed component, we found that the component designed in this research still has room for optimization in terms of added noise and saturation power. Future research will focus on eliminating loss mechanisms through design and enhancing saturation power by incorporating SQUID arrays.
[1] Z. R. Lin, K. Inomata, W. D. Oliver, K. Koshino, Y. Nakamura, J. S. Tsai, T. Yamamoto.
”Single-shot readout of a superconducting flux qubit with a flux-driven Josephson para
metric amplifier.” Appl. Phys. Lett. 103, 132602 (2013)
[2] S. Uchaikin, Kim, Jinmyeong, Kutlu, Caglar, Ivanov, Boris. ”Josephson Parametric
Amplifier based Quantum Noise Limited Amplifier Development for Axion Search Ex
periments in CAPP.” Front. Phys. 12, 10.3389 (2024)
[3] H. Chang, J. Y. Chang, Y. C. Chang, Y. Han Chang, Y. Hann Chang, C. H. Chen, C.
F. Chen, K. Y. Chen, Y. F. Chen, et al. ” First Results from the Taiwan Axion Search
Experiment with a Haloscope at 19.6µeV.” Phys. Rev. Lett. 129, 111802 (2022)
[4] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y.
Nakamura, J. S. Tsai. ”Flux-driven Josephson parametric amplifier.” Appl. Phys. Lett.
93, 042510 (2008)
[5] C. M. Caves. ”Quantum limits on noise in linear amplifiers.” Phys. Rev. D 26, 1817
(1982)
[6] A. Barone, G. Paterno. ”Physics and Applications of the Josephson Effect.” Chap. 11
(1982)
[7] T. Elo, T. S. Abhilash, M. R. Perelshtein, I. Lilja, E. V. Korostylev, P. J. Hakonen.”
Broadband lumped-element Josephson parametric amplifier with single-step lithogra
phy.” Appl. Phys. Lett. 114, 152601.(2019)
[8] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen,
Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A. N. Cleland, John M.
Martinis. ”Design and characterization of a lumped element single-ended superconduct
ing microwave parametric amplifier with on-chip flux bias line.” Appl. Phys. Lett. 103,
122602 (2013)
[9] R. Kaufman, T. White, Mark I. Dykman, A. Iorio, G. Sterling, S. Hong, A. Opremcak,
A. Bengtsson, L. Faoro , Joseph C. Bardin , T. Burger, R. Gasca, O. Naaman. ”Joseph
son parametric amplifier with Chebyshev gain profile and high saturation.” Phys. Rev.
Applied 20, 054058 (2023)
[10] O. Naaman, D. G. Ferguson, A. Marakov, M. Khalil, W. F. Koehl, R. J. Epstein, “High
Saturation Power Josephson Parametric Amplifier with GHz Bandwidth.” 2019 IEEE
MTT-S International Microwave Symposium (IMS) (2017): 259-262.
[11] K. Peng, R. Poore, P. Krantz, D. E. Root, K. P. O’Brien, ”X-parameter based design
and simulation of Josephson traveling-wave parametric amplifiers for quantum comput
ing applications.” 2022 IEEE International Conference on Quantum Computing and
Engineering (2022)
[12] C. Eichler, A. Wallraf. ”Controlling the dynamic range of a Josephson parametric am
plifier.” Eichler and Wallraff EPJ QuantumTechnology (2014)
[13] D. Arweiler. ”Multi-SQUID Josephson Parametric Ampliers.” Master Thesis, Technical
University of Munich (2018)
[14] N. S. Chang. ”Design and Performance Verification of Flux-Driven Josephson Parametric
Amplifier.” National Central University (2023)
[15] C. Tannous. ”Superconductivity fundamentals and Applications.” Master. Milieux Dilec
triques et Magntiques, UBO Brest, France. (2016)
[16] Y. Yamamoto, K. Semba (eds.). ”Principles and Methods of Quantum Information Tech
nologies.” Lecture Notes in Physics 911.(2016)
[17] M. Hatridge, R. Vijay, D. H. Slichter, John Clarke, I. Siddiqi. ”Dispersive magnetometry
with a quantum limited SQUID parametric amplier.” Phys. Rev. B 83, 134501 (2011)
[18] V.E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, M. Devoret. ”Mi
crowave bifurcation of a Josephson junction: Embedding-circuit requirements.” Phys.
Rev. B 76, 014524 (2007)
[19] R. Vijay, M. H. Devoret, I. Siddiqi. ”Invited Review Article: The Josephson bifurcation
amplifier.” Rev. Sci. Instrum. 80, 111101 (2009)
[20] A. W. Eddins. ”Superconducting Circuits for Quantum Metrology with Nonclassical
Light.” Doctor Thesis, University of California, Berkeley (2017)
[21] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M.
H. Devoret. ”RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement.”
Phys. Rev. Lett. 93, 207002 (2004)
[22] A. Baust. ”Characterization of Flux-driven Josephson Parametric Ampliers.” Master
Thesis, Technical University of Munich (2010)
[23] W. Wustmann, V. Shumeiko. ”Parametric resonance in tunable superconducting cavi
ties.” Phys. Rev. B 87, 184501 (2013)
[24] M. A. Castellanos-Beltran. ”Development of a Josephson parametric amplifier for the
preparation and detection of nonclassical states of microwave fields.” Diss. University of
Colorado at Boulder, (2010)
[25] M. A. Castellanos-Beltran, K. W. Lehnert. ”Widely tunable parametric amplifier based
on a superconducting quantum interference device array resonator.” Appl. Phys. Lett.
91, 083509 (2007)
[26] M. A. Castellanos-Beltran, K. D. Irwin, L. R. Vale, G. C. Hilton and K. W. Lehnert.
”Bandwidth and Dynamic Range of a Widely Tunable Josephson Parametric Amplifier.”
Applied Superconductivity, IEEE Transactions (2009)
[27] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen,
Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A. N. Cleland, John M.
Martinis. ”Design and characterization of a lumped element single-ended superconduct
ing microwave parametric amplifier with on-chip flux bias line.” Appl. Phys. Lett. 103,
122602. (2013)