| 研究生: |
周皇谷 Huang-Gu Zhou |
|---|---|
| 論文名稱: | The integrability of the Horizontal mean curvature near an isolated characteristic point in the Heisenberg group |
| 指導教授: |
饒維明
Duy-Minh Nhieu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 30 |
| 中文關鍵詞: | 水平平均曲率 |
| 外文關鍵詞: | Horizontal mean curvature |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在sub-Riemannian geometry中,horizontal mean curvature在曲面上的可積性扮演著重要的角色,並且在許多研究中常被假設是對的。但是,在Heisenberg group中,存在著一個C2 曲面,使得這個曲面上的horizontal mean curvature不是局部可積的。
本篇論文探討的問題是:在Heisenberg group 的曲面上,horizontal mean curvature在isolated characteristic point 附近的局部可積性。我們主要探討在Heisenberg group裡面其中一類的曲面,並建立一些在這些曲面上,horizontal mean curvature
可積性的充份條件。
The integrability of the horizontal mean curvature H plays a crucial role in
sub-Riemannian geometry and is often assumed in many works. However, in the
first Heisenberg group, which serves as a fundamental example of sub-Riemannian
manifolds, there exists a C2 surface where H for which fails to be locally integrable
near the characteristic set.
In this paper, we investigate the local integrability of H for surfaces near isolated
characteristic points in the first Heisenberg group, as conjectured in [DGN12]. We
study a specific class of surfaces and establish sufficient conditions that support the
validity of the conjecture.
[1] D. Danielli, N. Garofalo, and D. M. Nhieu. Integrability of the sub-Riemannian mean curvature of surfaces in the Heisenberg group. Proc. Amer. Math. Soc.,140(3):811–821, 2012.
[2] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An Introduction to the Heisenberg
Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, Vol. 259, Birkh¨auser, 2007.
[3] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math., 564 (2003), 63–83.
[4] M. Derridj. Sur un th´eor`eme de traces. Ann. Inst. Fourier (Grenoble), 22(2):73-83, 1972.
[5] R. K. Hladky and S. D. Pauls, Variation of perimeter measure in sub-Riemannian geometry, International Electronic Journal of Geometry, 6(1), 8–40, 2013.
[6] M. Ritor´e and C. Rosales, Area-Stationary Surfaces in the Heisenberg Group H1, Proc. Amer. Math. Soc. 134(11): 3549–3558, 2006.
[7] T. Rossi. Integrability of the sub-Riemannian mean curvature at degenerate characteristic
points in the Heisenberg group. Advances in Calculus of Variations, 2021.