跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周皇谷
Huang-Gu Zhou
論文名稱: The integrability of the Horizontal mean curvature near an isolated characteristic point in the Heisenberg group
指導教授: 饒維明
Duy-Minh Nhieu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 30
中文關鍵詞: 水平平均曲率
外文關鍵詞: Horizontal mean curvature
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在sub-Riemannian geometry中,horizontal mean curvature在曲面上的可積性扮演著重要的角色,並且在許多研究中常被假設是對的。但是,在Heisenberg group中,存在著一個C2 曲面,使得這個曲面上的horizontal mean curvature不是局部可積的。
    本篇論文探討的問題是:在Heisenberg group 的曲面上,horizontal mean curvature在isolated characteristic point 附近的局部可積性。我們主要探討在Heisenberg group裡面其中一類的曲面,並建立一些在這些曲面上,horizontal mean curvature
    可積性的充份條件。


    The integrability of the horizontal mean curvature H plays a crucial role in
    sub-Riemannian geometry and is often assumed in many works. However, in the
    first Heisenberg group, which serves as a fundamental example of sub-Riemannian
    manifolds, there exists a C2 surface where H for which fails to be locally integrable
    near the characteristic set.
    In this paper, we investigate the local integrability of H for surfaces near isolated
    characteristic points in the first Heisenberg group, as conjectured in [DGN12]. We
    study a specific class of surfaces and establish sufficient conditions that support the
    validity of the conjecture.

    Abstract i 1. Introduction 1 2. Preliminaries 3 3. Sufficient Conditions for the Local Integrability of H 8 References 17 Appendix 18

    [1] D. Danielli, N. Garofalo, and D. M. Nhieu. Integrability of the sub-Riemannian mean curvature of surfaces in the Heisenberg group. Proc. Amer. Math. Soc.,140(3):811–821, 2012.
    [2] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson, An Introduction to the Heisenberg
    Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, Vol. 259, Birkh¨auser, 2007.
    [3] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math., 564 (2003), 63–83.
    [4] M. Derridj. Sur un th´eor`eme de traces. Ann. Inst. Fourier (Grenoble), 22(2):73-83, 1972.
    [5] R. K. Hladky and S. D. Pauls, Variation of perimeter measure in sub-Riemannian geometry, International Electronic Journal of Geometry, 6(1), 8–40, 2013.
    [6] M. Ritor´e and C. Rosales, Area-Stationary Surfaces in the Heisenberg Group H1, Proc. Amer. Math. Soc. 134(11): 3549–3558, 2006.
    [7] T. Rossi. Integrability of the sub-Riemannian mean curvature at degenerate characteristic
    points in the Heisenberg group. Advances in Calculus of Variations, 2021.

    QR CODE
    :::