跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳信美
Hsin-mei Wu
論文名稱: 白光發光二極體色彩表現穩定技術之研究
The study for stabilization of color performance of white LEDs
指導教授: 楊宗勳
Tsung-hsun Yang
孫慶成
Ching-cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 73
中文關鍵詞: 螢光粉色彩穩定波長紅移色座標飄移色溫飄移
外文關鍵詞: stabilization of color performance, chromaticity coordinates shift, CCT shift, peak wavelength shift, phosphor
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於探討熱對藍光晶片搭配螢光粉之白光發光二極體(pc-LED)的影響,主要透過對一藍光晶片之輻射頻譜,其峰值波長在YAG的激發頻譜高峰左側,晶片受熱後,其輻射頻譜會紅移往YAG螢光粉之激發頻譜高峰靠近,如此會令更多藍光被 YAG激發出來,因此使轉換出來的黃光增加 ; 另一方面,螢光粉受熱會有熱衰現象,導致藍光被轉換之效率變低,這兩個因素相互作用的影響下,藉由評比色溫與色座標的漂移量降至最低、甚至幾乎不動,研究藍光晶片搭配YAG螢光粉能夠達到色彩穩定技術之條件,並透過實際封裝來進行分析與驗證。


    In this study, the thermal effects on LED color performance, such as CCT and chromaticity coordinate, were studied. As the temperature rises , the spectrum of bare chip will red shift that will let the efficiency increase or decrease. This phenomenon will be helpful to compensate the decay of the yellow light which results from thermal quenching, and it will achieve the stability of color performance.
    The purpose of this study is to achieve the minimum deviation of CCT and color coordinate by combining the bare chip with specific peak wavelength and phosphor YAG. In the end, based on the result of packing, we analyzed and verified our hypothesis.

    摘要 i Abstract ii 致謝 iii 目次 v 圖次 vii 表次 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 論文大綱 7 第二章 基本理論 8 2.1 色彩學 8 2.1.1 混光原理 8 2.1.2 色度座標 14 2.1.3 黑體輻射與色溫 17 2.2 LED發光原理 19 2.3 螢光粉發光原理 20 2.4 螢光粉的激發與輻射頻譜 22 第三章 熱影響色彩表現穩定性之因素 23 3.1 激發能力之計算 23 3.2 熱對藍光頻譜的影響 26 3.3 熱對螢光粉頻譜的影響 29 第四章 藍光LED 搭配 YAG 螢光粉色彩表現之實驗分析 33 4.1 白光LED 色彩穩定初步假設與構想 33 4.2實驗流程與架構 35 4.3封裝同濃度螢光粉的白光LED 驗證 39 4.4白光LED 的色彩表現分析 43 第五章 結論 50 參考文獻 52 中英文名詞對照表 56

    [1] Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, New York, 2002).
    [2] S. Chhajed, Y. Xi, Th. Gessmann, J.Q. Xi, J.M. Kim, and E.F. Schubert, “Junction temperature in light emitting diodes assessed by different methods,” Proc. SPIE 5739, 16–24 (2005).
    [3] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274–1278 (2005).
    [4] A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. S. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80, 234–237 (2002).
    [5] J. Tsao, “Solid-state lighting: lamps, chips and materials for tomorrow,” IEEE Circuits Devices Mag. 20, 28–37 (2004).
    [6] S. W. Brown, C. Santana, and G. P. Eppeldauer, “Development of a tunable LED-based colorimetric source,” J. Res. Natl. Inst. Stand. Technol. 107, 363–371 (2002).
    [7] N. Holonyak, Jr., and S. F. Bevaqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
    [8] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Berlin Heidelberg, Germany, 1997).
    [9] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U. S. Patent, US 5998925 (1999).
    [10] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    [11] 孫慶成,「螢光粉模型與LED光色的控制」,2010 LED固態照明研討論文集,國立中央大學,中壢市,中華民國九十七年。
    [12] 國立中央大學光電科學與工程學系,光電科技概論,初版,五南圖書出版股份有限公司,台北市,中華民國九十七年。
    [13] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of multichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [14] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near- UV/Blue light-emitting devices,” U. S. Patent, US 6685852 B2 (2004).
    [15] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron. 8, 310-320 (2002).
    [16] C. C. Yang, C. M. Lin, Y. Chen, Y. T. Wu, S. R. Chuang, S. F. Huand, and R. S. Liua, “Highly stable three-band white light from an InGaN-based blue lightemitting diode chip precoated with (oxy) nitride green/red phosphors,” Appl. Phys. Lett. 90, 123503-12505 (2007).
    [17] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” U. S. Patent, US 6686676 B2 (2004).
    [18] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U. S. Patent, US 5998925 (1999).
    [19] 陳正健,白光LED封裝光學品質之研究,國立中央大學光電所碩士論文,中華民國九十七年。
    [20] J. Zhang, X. Hu, A. Lunev, J. Deng, Y. Bilenko, T. M. Katona, M. S. Shur, R. Gaska, and M. A. Khan, “ AlGaN deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 44, 7250-7253 (2005).
    [21] T.F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflector and UV-based light source having reduced UV radiation leakage incorporating the same,” U. S. Patent, Us 6686676 B2 (2004).
    [22] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
    [23] H. X. Wang, H.D. Li, Y. B. Lee, H. Sato, K. Yamashita, T. Sugahara, and S. Sakai, “Fabrication of high-performance 370 nm ultraviolet light emitting diodes,” J. Cryst. Growth 264, 48-52 (2004).
    [24] S. H. Baek, J. O. Kim, M. K. Kwon, I. K. Park, S. I. Na, J. Y. Kim, B. Kim, and S. J. Park, “Enhanced carrier confinement in AlInGaN-InGaN quantum wells in near ultraviolet light emitting diodes,” IEEE Photon. Technol. Lett. 18, 1276-1278 (2006).
    [25] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration” Opt. Express 5, 5055-5060 (2007).
    [26] M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal management of LEDs: package to system,” Proc. SPIE 5187, 64-75 (2004).
    [27] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: failure analysis of white LEDs,” J. Cryst. Growth 268, 449–456 (2004).
    [28] R. Mueller-Mach, G. Mueller, M. R. Krames, and T. Trottier, “ High-power
    phosphor-converted light-emitting diodes based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
    [29] 大田 登,色彩工程學,二版,全華科技圖書公司,民國九十五年。
    [30] G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (John Wiley, New York, 1982).
    [31] J. Guild, “The colorimetric properties of the spectrum,” Philos. R. Soc. London 230, 149-187 (1931).
    [32] W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral color,” Trans. Opt. Soc. London 30, 141-164 (1928).
    [33] W. D. Wright, “A re-determination of the mixture curves of the spectrum,” Trans. Opt. Soc. London 31, 201-218 (1930).
    [34] 大田 登,基礎色彩再現工程,全華科技圖書公司,中華民國九十四年。
    [35] E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
    [36] H. Grassman, “On the theory of compound colors,” Phil. Mag. (Ser.4.) 7, 254-264 (1854).
    [37] J. C. Maxwell and Q. Zaidi, “Theory of the compound colors, and the relations of the colors of the spectrum,” Color Res. and Appl. 18, 270-287 (1993).
    [38] 鍾正揚,白光LED之YAG與氮化物螢光粉色彩表現之研究,國立中央大學光電所碩士論文,中華民國九十九年。
    [39] 劉如熹,白光發光二極體製作技術-由晶粒金屬化至封裝,全華科技圖書公司,台北縣,民國九十七年。
    [40] 劉如熹和王健源,白光發光二極體製作技術-21 世紀人類的新曙光,全華科技圖書公司,台北縣,民國九十四年。
    [41] 紀葦世,高效能 YAG 螢光粉之特性量測與模型,元智大學光電所碩士論文,中華民國九十九年。
    [42] Y. Gu, N. Narendran, T. Dong, and H. Wu., “Spectral and luminous efficacy change of high-power LEDs under different dimming methods,” Proc. SPIE 6337, 63370J (2006).
    [43] Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs,” Proc. SPIE 5187, 107-114 (2004).
    [44] E. Hong and N. Narendran, “A method for projecting useful life of LED lighting systems,” Proc. SPIE 5187, 93-99 (2004).
    [45] S. Nakamura, T. Mukai, and M. Senoh, “High-brightness InGaN/AlGaN double-heterostructure blue-green- light-emitting diodes,” J. Appl. Phys. 76, 8189-8191 (1994).
    [46] S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes” Science 281, 956-961 (1998).
    [47] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics (John Wiley & Sons, New York, 2007).
    [48] S. Zhang, “Traveling-wave electroabsorption modulators,” University of California, Santa Barbara, Ph. D. Dissertation (1999).
    [49] D. A. Neamen, Semiconductor Physics and Device (McGraw-Hill, New York, 2003).

    QR CODE
    :::