跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱得佑
De-You Ju
論文名稱: 錫-銀及錫-銀-銅無鉛銲錫之潛變行為研究
Creep Behavior of Sn-3.5Ag and Sn-3.5Ag-0.5Cu Lead-Free Solders
指導教授: 林志光
Chih-Kuang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 92
語文別: 英文
論文頁數: 113
中文關鍵詞: 無鉛銲錫潛變
外文關鍵詞: Creep, Lead-Free Solder, Sn-3.5Ag, Larson-Miller, Sn-3.5Ag-0.5Cu, Monkman-Grant
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨在探討Sn-3.5Ag與Sn-3.5Ag-0.5Cu兩款電子構裝用無鉛銲錫之機械性質及潛變行為,並與目前工業上常用的Sn-37Pb銲錫做比較,以了解未來運用無鉛銲錫替代傳統含鉛銲錫之可行性。此外,亦利用掃描式電子顯微鏡(SEM)來觀察此兩款無鉛銲錫及傳統錫鉛銲錫之潛變破壞特徵。
    實驗結果顯示,此兩款無鉛銲錫之抗拉強度及抗潛變能力在室溫及90oC之間皆會隨著溫度的提昇而降低。在室溫下,Sn-3.5Ag-0.5Cu合金有最高的抗拉強度,Sn-3.5Ag合金次之,Sn-37Pb合金最低。另外,在相同的測試溫度下,由於Sn-3.5Ag-0.5Cu合金有較Sn-3.5Ag合金均勻之共晶相及數量較多之介金屬顆粒,因此可以發現Sn-3.5Ag-0.5Cu比Sn-3.5Ag合金有較高之抗拉強度與潛變強度。Sn-37Pb合金在潛變實驗中所表現之超塑性行為經推測主要是由於高溫環境、擠製製程與低施加應力所造成。最後,藉由排除第三階段潛變及破斷位置的影響,發現利用Monkman-Grant關係式來描述此三款銲錫之潛變行為有相當不錯的結果。此外,本文也利用Larson-Miller關係式來整合潛變壽命、外加應力與溫度之間關係,分析結果顯示Larson-Miller關係式對此兩款無鉛銲錫的潛變壽命也有相當不錯的描述。
    由SEM觀察得知,在相同溫度之下,潛變之破斷表面可以發現數量比拉伸破斷面多之較大孔洞。此外,在兩款無鉛銲錫中可發現微小孔洞會成核在晶界面與(或)介金屬界面,而此兩者的差異主要受到實驗溫度的不同所影響。此兩款無鉛銲錫在不同溫度下之孔洞形成位置似乎與不同之應力指數及其對應之潛變機制有一定程度的關聯性。


    The purpose of this study is to investigate the mechanical properties and creep behavior of Sn-3.5Ag and Sn-3.5Ag-0.5Cu lead-free solders. These properties were compared with those of conventional Sn-37Pb solder to evaluate the feasibility of using lead-free solders to replace the Pb-contained ones in the future. Fractography analysis with scanning electronic microscopy (SEM) was conducted to determine the creep fracture mechanisms for the given three solders.
    Experimental results show that the ultimate tensile strength (UTS) and creep resistance were decreased with increasing temperature from room temperature (RT) to 90oC for each given lead-free solder. At RT, Sn-3.5Ag-0.5Cu alloy had the highest tensile and creep strength followed by Sn-3.5Ag alloy, and then the Sn-37Pb alloy. Due to a more uniform distribution of eutectic phases and a larger fraction of IMCs, the Sn-3.5Ag-0.5Cu alloy had greater UTS and creep strength than did the eutectic Sn-3.5Ag solder at each testing temperature. The superplasticity behavior in the Sn-37Pb solder at RT was associated with a high homologous temperature, extruding process, and low stress levels. By neglecting the effects of tertiary creep and failure position of specimen, the creep behavior of the given three alloys could be well described by the Monkman-Grant rule. Larson-Miller relationship was also applied and showed good results in correlating the creep rupture time, applied stress and temperature for the given two lead-free solders.
    From SEM observations, it could be found that the creep fracture surfaces had more larger microvoids than did the tensile ones at a given temperature. In addition, microvoids were found to nucleate in grain boundaries and/or matrix/intermetallic interfaces (MIIs) for the two lead-free solders at different temperatures. The variation of stress exponent n and corresponding creep mechanism with testing temperature for the given two lead-free solders seemed to be related to the difference in nucleation site of microvoid at different testing temperatures.

    TABLE OF CONTENTS Page LIST OF TABLES VI LIST OF FIGURES VII 1. INTRODUCTION 1 1.1 Background 1 1.2 Tin-Lead Solders 3 1.3 Lead-Free Solders 5 1.3.1 Sn-Ag Alloys 6 1.3.2 Sn-Zn Alloys 7 1.3.3 Sn-Bi Alloys 8 1.3.4 Sn-Cu Alloys 9 1.3.5 Sn-In Alloys 10 1.4 Creep of Solders 11 1.4.1 Creep 12 1.4.2 Creep Curve 13 1.4.3 Constitutive Equation 14 1.4.4 Mechanisms of Creep Deformation 15 1.5 Literature Review 18 1.6 Purpose and Scope 20 2. EXPERIMENTAL PROCEDURES 22 2.1 Material and Specimen Geometry 22 2.2 Tensile Tests 22 2.3 Creep Tests 22 2.4 Microstructural and Fractography Analyses 23 3. RESULTS AND DISCUSSION 25 3.1 Microstructure 25 3.2 Tensile Properties 26 3.3 Creep Deformation and Rupture 27 3.3.1 Creep Curves 27 3.3.2 Relation Between Deformation Level and Creep Lifetime 29 3.3.3 Effect of Temperature on Creep 31 3.4 Fractography Analysis 33 4. CONCLUSIONS 35 REFERENCES 37 TABLES 43 FIGURES 51

    REFERENCES
    1. W. J. Plumbridge, “Review: Solders in Electronics,” Journal of Materials Science, Vol. 31, 1996, pp. 2501-2514.
    2. S. K. Kang and A. K. Sarkhel, “Lead (Pb)-Free Solders for Electronic Packaging,” Journal of Electronic Materials, Vol.23, 1994, pp. 701-707.
    3. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering R, Vol. 27, 2000, pp. 95-141.
    4. Environmental Protection Agency, Comprehensive Review of Lead in the Environment under TSCA, 56FR 22096-98, 1991.
    5. IPC Roadmap: A Guide for Assembly of Lead-Free Electronics, 4th Draft, IPC, Northbrook, IL, June, 2000.
    6. 菅沼 克昭, 鉛付技術, 工業調查會, 日本, 2001. (日文)
    7. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Techonlogy,” Materials Science and Engineering R, Vol. 38, 2002, pp. 55-105.
    8. D. Napp, “Lead-Free Interconnect Materials for the Electronic Industry,” p. 342 in Proceedings of the 27th International SAMPE Technical Conference, Albuquerque, NM, U.S.A. October 9-12, 1995.
    9. Alloy Phase Diagrams, ASM Handbook, Vol. 3, ASM International, Materials Park, OH, 1992, pp. 2.1-2.260.
    10. M. McCormack and S. Jin, “Improve Mechanical Properties in New, Pb-Free Solder Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
    11. W. Yang, L. E. Feltion, and R. W. Messler, “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
    12. Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder alloys, “ Journal of Electronic Materials, Vol. 27, 1998, pp. 1229-1235.
    13. V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, “Fracture of Sn-3.5%Ag Solder Alloy Under Creep,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1356-1361.
    14. W. J. Plumbridge, C. R. Gagg, and S. Peters, “The Creep of Lead-Free Solders at Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1178-1183.
    15. S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, “Stress Relaxation Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1197-1205.
    16. N. C. Lee, “Getting Ready for Lead-Free Solders,“ Soldering and Surface Mount Technology, Vol. 9, 1997, pp.65-69.
    17. J. W. Morris, J. L. F. Goldstein, and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders,” JOM, Vol. 45, 1993, pp. 25-27.
    18. H. Kabassis, J. W. Rutter, and W. C. Winegard, “Phase Relationships in Bi-In-Sn Alloy System,” Materials Science and Technology, Vol. 2, 1986, pp. 985-988.
    19. Z. Mei and J. W. Morris, Jr., “Characterization of Eutectic Sn-Bi Solder Joints,” Journal of Electronic Materials, Vol. 21, 1992, pp. 599-607.
    20. F. Ojebuoboh and D. R. Morris, ”Oxygen Deleading of Lead-Bismuth Alloys,” Metallurgical Transactions B, Vol. 24, 1993, pp. 839-846.
    21. J. Glazer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Review,” Journal of Electronic Materials, Vol. 23, 1994, pp. 693-700.
    22. Z. Mei and J. W. Morris, Jr., “Superplastic Creep of Low Melting Point Solder Joints,” Journal of Electronic Materials, Vol. 21, 1992, pp. 401-407.
    23. J. Seyyedi, “Thermal Fatigue Behavior of Low Melting Point Solder Joints,” Soldering and Surface Mount Technology, Vol. 13, 1993, pp. 26-32.
    24. J. H. Lau, Solder Joint Reliability-Theory and Applications, Van Nostrand Reinhold, New York, USA, 1991.
    25. R. P. Skelton, High Temperature Fatigue: Properties and Prediction, Elsevier Applied Science, New York, USA, 1987.
    26. C. Josef, Creep in Metallic Materials, Elsevier Science Publishing Company, Inc., New York, USA, 1988.
    27. J. Bressers, Creep and Fatigue in High Temperature Alloys, Applied Science, London, England, 1981.
    28. G. E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, USA, 1988.
    29. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, PWS Publishing Company, Boston, USA, 1994.
    30. A. H. Hult, Creep in Engineering Structures, Blaisdell Publishing Company, Massachusetts, USA, 1966.
    31. O. Milton, Reliability and Failure of Electronic Materials and Devices, Academic Press, San Diego, USA, 1998.
    32. A. K. Mukherjee, J. E. Bird, and J. E. Dorn, “Experimental Correlation for High-Temperature Creep,” Transactions of American Society for Metals, Vol. 62, 1969, pp. 155-179.
    33. J. Weertman, “Steady-State Creep Through Dislocation Climb,” Journal of Applied Physics, Vol. 28, 1957, p. 362.
    34. N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue, Prentice-Hall International, New Jersey, USA, 1993.
    35. H. J. Frost and M. F. Ashby, Deformation-Mechanism Maps, Pergamon Press, New York, USA, 1982.
    36. W. Yang and R. W. Messler, Jr., “Microstructure Evolution of Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 23, 1994, pp. 765-772.
    37. F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, “Effects of Reflow on Wettability, Microstructure and Mechanical Properties in Lead-Free Solders,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1241-1248.
    38. C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Improvements of Microstructure, Wettability, Tensile and Creep Strength of Eutectic Sn-Ag Alloy by Doping with Rare-Earth Elements,” Journal of Materials Research, Vol. 17, 2002, pp. 3146-3154.
    39. F. Guo, J. P. Lucas, and K. N. Subramanian, “Creep Behavior in Cu and Ag Particle-Reinforced Composite and Eutectic Sn-3.5Ag and Sn-4.0Ag-0.5Cu Non-Composite Solder Joints,” Journal of Material Science, Vol. 12, 2001, pp. 27-35.
    40. J. Yu, D. K. Joo, and S. W. Shin, “Rupture Time Analyses of the Sn-3.5Ag Alloys Containing Cu or Bi,” Acta Materialia, Vol. 50, 2002, pp. 4315-4324.
    41. I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terpstra, “Microstructural Modifications and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying,” Journal of Electronic Materials, Vol. 31, 2002, pp. 1166-1174.
    42. I. E. Anderson, B. A. Cook, J. L. Harringa, and R. L. Terpstra, “Sn-Ag-Cu Solders and Solder Joints: Alloy Development, Microstructure, and Properties,” JOM, Vol. 54, 2002, pp. 26-29.
    43. F. Ochoa, J. J. Williams, and N. Chawla, “Effects of Cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of Electronic Materials, Vol. 32, 2003, pp.1414-1420.
    44. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,” Materials Science and Engineering A, Vol. 333, 2002, pp.106-114.
    45. D. K. Joo, J. Yu, and S. W. Shin, “Creep Rupture of Lead-Free Sn-3.5Ag-Cu Solders,” Journal of Electronic Materials, Vol. 32, 2003, pp. 541-547.
    46. F. Guo, S. Choi, K. N. Subramanian, T. R. Bieler, J. P. Lucas, A. Achari, and M. Paruchuri, “Evaluation of Creep Behavior of Near-Eutectic Sn-Ag Solders Containing Small Amount of Alloy Additions,” Materials Science and Engineering A, Vol. 351, 2003, pp. 190-199.
    47. K. Wu, N. Wade, J. Cui, and K. Miyahara, “Microstructural Effect on the Creep Strength of a Sn-3.5%Ag Solder Alloy,” Journal of Electronic Materials, Vol. 32, 2003, pp. 5-8.
    48. H. G. Song, J. W. Morris, Jr., and F. Hua, “Anomalous Creep in Sn-Rich Solder Joints,” Materials Transactions, Vol. 43, 2002, pp. 1874-1853.
    49. M. L. Huang and L. Wang, “Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy,” Journal of Materials Research, Vol. 17, 2002, pp. 2897-2903.
    50. M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical-Properties,” Applied Physics Letters, Vol. 63, 1993, pp. 15-17.
    51. “Standard Test Method for Tension Testing of Metallic Material,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 78-98.
    52. “Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Material,” ASTM E139-96, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 255-265.
    53. M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.1155-1162.
    54. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1122-1136.
    55. C. M. Miller, I. E. Anderson, and J. F. Smith, “A Viable Tin-Lead Solder Substitute- Sn-Ag-Cu,” Journal of Electronic Materials, Vol. 23, 1994, pp. 595-601.
    56. W. J. Plumbridge and C. R. Gagg, “Effects of Strain Rate and Temperature on the Stress-Strain Response of Solder Alloys,” Journal of Materials Science: Materials in Electronics, Vol. 10, 1999, pp. 461-468.
    57. N. Wade, T. Akuzawa, S. Yamada, D. Sugiyama, I. Kim, and K. Miyahara, “Effects of Microalloying on the Creep Strength and Microstructure of an Eutectic Sn-Pb Solder Alloy,” Journal of Electronic Materials, Vol. 28, 1999, pp. 1286-1289.
    58. N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, “Effects of Cu, Ag and Sb on the Creep-Rupture Strength of Lead-Free Solder Alloys,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1228-1231.
    59. S. W. Shin and J. Yu, “Creep Deformation of Lead-Free Sn-3.5Ag-Bi Solders,” The Japan Society of Applied Physics, Vol. 42, 2003, pp. 1368-1374.
    60. Z. Mei, D. Grivas, M. C. Shine, and J. W. Morris, Jr., “Superplastic Creep of Eutectic Tin-Lead Solder Joints,” Journal of Electronic Materials, Vol. 19, 1990, pp. 1273-1280.
    61. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine, “Creep, Stress Relaxation, and Plastic Deformation in Sn-Ag and Sn-Zn Eutectic Solders,” Journal of Electronic Materials, Vol. 26, 1997, pp. 783-790.
    62. R. C. Weinbel and J. K. Tien, “Creep-Fatigue Interaction in Eutectic Lead-Tin Solder Alloy,” Journal of Materials Science, Vol. 22, 1987, pp. 3901-3906.
    63. H. Riedel, Fracture at High Temperatures, Springer-Verlag Berlin, Heidelberg, Germany, 1987.
    64. V. I. Igoshev, J. I. Kleiman, D. Shangguan, C. Lock, and S. Wong, “Microstructure Changes in Sn-3.5Ag Solder Alloy During Creep,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1367-1371.

    QR CODE
    :::