跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王千和
Qian-He Wang
論文名稱: 拓樸極化與高階拓樸效應相關性之研究
Study on the Correlation Between Topological Polarization and Higher-Order Topological Effects
指導教授: 欒丕綱
Pi-Gang Luan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 83
中文關鍵詞: 拓樸光子晶體角態邊緣態
外文關鍵詞: Topological, Photonic Crystal, Corner state, Edge state
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是在探討拓樸極化的計算方法,並加以分析拓樸邊緣態與拓樸角態之 間的相互關聯性,為了詳細研究拓樸極化,本研究選擇了正方晶格,並分別在正 方晶格x方向和y方向的上對波向量分量進行劃分,我們將其切成25等分,每個 分點的波向量值都會計算出其相對應的札克相。 在計算得到相對應的札克相後,我們進一步對其進行平均值的處理,我們通 過求取這些25個分點札克相的平均值,將其代入拓樸極化的公式中,從而計算得 到拓樸極化𝑃 ⃑ =(𝑃𝑥,𝑃𝑦)的具體數值。 透過這些計算結果,我們驗證了不同的拓樸結構下之極化特性,並且進一步 去觀察這些特性是否與拓樸邊緣態與拓樸角態的出現相符。


    This study explores the computational methods for topological polarization and analyzes the correlation between topological edge states and topological corner states. To study topological polarization in detail, we chose a square lattice and divided the wavevector components along both the x and y directions of the lattice. The wavevector was divided into 25 segments, and for each point, the corresponding Zak phase was calculated. After calculating the corresponding Zak phases, we further averaged these values. By calculating the average of the Zak phases at these 25 points, we substituted the values into the formula for topological polarization to compute the specific values of topological polarization 𝑃 ⃑ = (𝑃𝑥,𝑃𝑦). Through these calculations, we validated the polarization characteristics under different topological structures and further observed whether these characteristics were consistent with the emergence of topological edge states and topological corner states.

    摘要 I Abstract II 誌謝 III 目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 基本的光子晶體介紹 1 1.2 共振腔與波導的實際應用 3 1.3 在光子晶體模態的拓樸 5 1.4 拓樸角態與邊緣態的發展 6 1.5 論文架構 7 第二章 光子晶體的拓樸性質 9 2.1 布洛赫定理(Bloch’s Theorem) 9 2.2 布里淵區(Brillouin zone,BZ) 11 2.3 札克相(Zak phase) 14 2.4 貝里相(Berry phase) 16 2.5 拓樸極化(Topological Polarization) 17 2.6 高階拓樸效應 18 第三章 研究方法 21 3.1 結構的設計 21 3.2 能帶結構的模擬 25 3.3 計算札克相 28 3.4 計算拓樸極化 29 第四章 研究結果與討論 34 4.1 第一種結構的高階拓樸效應 34 4.2 第二種結構的高階拓樸效應 40 4.3 第三種結構的高階拓樸效應 47 4.4 模擬結果的小整理 59 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 62

    [1] Uttara Biswas, Chittaranjan Nayak, Jayanta Kumar Rakshit, "Fabrication techniques and applications of two-dimensional photonic crystal: history and the present status," Opt. Eng. 62, 067105, (2023).
    [2] Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D., Photonic Crystals: Molding the Flow of Light (2nd ed.), Princeton University Press, (2008).
    [3] Yablonovitch, E., "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, pp. 2059, (1987).
    [4] John, S., "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, pp. 2486, (1987).
    [5] G. Shen, H. Tian, D. Yang and Y. Ji, "Integration of Photonic Crystal Splitter and Slow Light Waveguide for a Microwave Photonic Filter," in IEEE Photonics Journal 5, 5501311 (2013).
    [6] Masaya Notomi, "Manipulating light with strongly modulated photonic crystals," Rep. Prog. Phys. 73, 096501 (2010).
    [7] 蔡雅雯、吳杰倫、欒丕綱,〈從量子霍爾效應到拓樸光子學與拓樸聲子學〉, 《科儀新知》,211期,68–79(2017)。
    [8] M. Z. Hasan, C. L. Kane, "Colloquium: Topological insulators," Rev. Mod. Phys. 82, 3045 (2010).
    [9] F. D. M. Haldane, "Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the 'Parity Anomaly'," Phys. Rev. Lett. 61 (1988).
    [10] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić, "Reflection-free one-way edge modes in a gyromagnetic photonic crystal," Phys. Rev. Lett. 100, 013905 (2008). [11] M. Xiao, Z. Q. Zhang, C. T. Chan, "Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems," Phys. Rev. X 4, 021017 (2014).
    [12] K. v. Klitzing, G. Dorda, M. Pepper, "New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance," Phys. Rev. Lett. 45, 494 (1980).
    [13] C. L. Kane, E. J. Mele, "Quantum Spin Hall Effect in Graphene," Phys. Rev. Lett.95, 226801 (2005).
    [14] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, T. Neupert, "Higher-Order Topology in Bismuth," Nat. Phys. 14, 918–924 (2018).
    [15] 欒丕綱、陳啟昌,光子晶體:從蝴蝶翅膀到奈米光子學(第二版),五南圖書 出版公司(2010)。
    [16] S. Zarei, M. Shahabadi and A. Zarei, "Ring-shaped two-dimensional photonic crystal structures showing large higher-order stop-bands," 2010 12th International Conference on Transparent Optical Networks, Munich, Germany, 2010, pp.1-3, doi:10.1109/ICTON.2010.5549312.
    [17] J.D. Joannopoulos, Pierre R. Villeneuve & Shanhui Fan, " Photonic crystals: putting a new twist on light," Nat 386, 143-149 (1997).
    [18] Ling Lu, John D. Joannopoulos and Marin Soljačić, " Topological photonics," Nat. Photonics 8, 821–829 (2014). [19] Marcos Atala1, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa, Eugene Demler and Immanuel Bloch, " Direct measurement of the Zak phase in topological Bloch bands," Nat. Phys. 9, 795-800 (2013).
    [20] Meng Xiao, Z. Q. Zhang, and C. T. Chan, " Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems," Phys. Rev. X. 4, 021017 (2014).
    [21] Liu, X., Zhang, Y., " Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material," Phys. Rev. Lett. 114, 223901 (2015).
    [22] Di Xiao, Ming-Che Chang, Qian Niu, " Berry phase effects on electronic properties," Rev. Mod. Phys. 82, 1959 (2010).
    [23] Berry, M. V., "Anticipations of the geometric phase," Phys. Today 43, 34–40 (1990).
    [24] Mikael C. Rechtsman, Julia M. Zeuner, Yonatan Plotnik, Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan Nolte, Mordechai Segev & Alexander Szameit, " Photonic Floquet topological insulators," Nature 496, 196-200 (2013).
    [25] Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I., Vanderbilt, D., "Maximally localized Wannier functions: Theory and applications," Rev. Mod. Phys. 84, 1419 (2012).
    [26] Taherinejad, M., Vanderbilt, D., Rappe, A. M., "Wannier center sheets in topological insulators," Phys. Rev. B 89, 115102 (2014).
    [27] King-Smith, R. D., Vanderbilt, D., "Theory of polarization in crystalline solids," Phys. Rev. B 47, 1651 (1993).
    [28] Hughes, T. L., Prodan, E., Bernevig, B. A., "Inversion-symmetric topological insulators," Phys. Rev. B 83, 245132 (2011).
    [29] Gresch, D., Troyer, M., Soluyanov, A. A., "Z2Pack: Numerical implementation of hybrid Wannier centers for identifying topological materials," Phys. Rev. B 95, 075146 (2017).
    [30] Benalcazar, W. A., Bernevig, B. A., Hughes, T. L., "Quantized electric multipole insulators," Science, 357, 61–66 (2017).
    [31] Schindler, F., Cook, A. M., Vergniory, M. G., Wang, Z., Parkin, S. S. P., Bernevig, B. A., Neupert, T.,"Higher-order topological insulators," Sci. Adv. 4, eaat0346 (2018). [32] Jin, M.-C., Gao, Y.-F., Lin, H.-Z., He, Y.-H., Chen, M.-Y.,"Corner states in second order two-dimensional topological photonic crystals with reversed materials," Phys. Rev. A 106, 013513 (2022).
    [33] Wei, G., Liu, Y., Liu, Z., Zhang, D., Xiao, J.,"Realization of hierarchical topological transitions and high-Q-response corner states in second-order topological photonic crystals," J. Phys. D: Appl. Phys. 53, 435104 (2020).
    [34] Xiong, L., Liu, Y., Zhang, Y., Zheng, Y., Jiang, X.,"Topological properties of two dimensional photonic square lattice without C₄ and Mₓ(y) symmetries," arXiv preprint, arXiv:2203.09883 (2022).
    [35] Chen, X.-D., Deng, W.-M., Shi, F.-L., Zhao, F.-L., Chen, M., Dong, J.-W.,"Direct Observation of Corner States in Second-Order Topological Photonic Crystal Slabs," Phys. Rev. Lett. 122, 233902 (2019).

    QR CODE
    :::