| 研究生: |
吳桂卿 Gui-Qing Wu |
|---|---|
| 論文名稱: |
不同養護溫度條件對提升障壁混凝土品質之成效 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 氯離子 、高溫養護 、使用年限 |
| 外文關鍵詞: | chloride ions, high temperature maintenance, service life |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用先前研究團隊所使用配比HIC-C與HIC-M及配比C與配比M的數據基礎下,量測更長時間之試驗數據,以利得到更精確之推估結果。配比HIC-C、HIC-M為2010年依據AASHTO T260所改良之長期浸泡試驗法,目前已完成五年之數據。另外配比C與配比M為2014年依照ASTM C1556之試驗方法。最後,將比較長期浸泡及ASTM兩種方式之試驗方法及其試驗結果。
依據以上結果,本研究期望再尋求新方法能讓混凝土耐用度提高,於本研究利用不同養護溫度60℃(1、2、4天)及80℃(3、4、3+200℃烘箱12小時),觀察是否能提升混凝土之耐久性,達到提高品質之效果,分別進行抗壓強度試驗、孔隙率試驗、孔隙粒徑分布與電阻率試驗,評估不同養護方式與養護齡期之影響。
結果顯示長期浸泡試驗將隨浸泡時間越長氯離子含量越高,而ASTM C1556的方法因為混凝土隨著齡期增加水化程度上升,使得氯離子入侵困難,瞬時擴散係數隨齡期增加而降低,故混凝土受氯離子入侵的服務年限推估,將建議使用ASTM C1556方法,此法能模擬隨時間增加而擴散係數降低的特性。於孔隙率、孔隙分佈、電阻率等,相較於常溫養護使用80℃高溫熱水養護能有效提升品質,使孔隙更緻密,可影響氯離子入侵之能力,而試驗成果最佳高溫養護天數為4天。
This study measures long-period experimental data to get better estimated results based on previous studies by using mixes HIC-C and HIC-M, and mixes C and M. Mixes HIC-C and HIC-M were prepared and revised from AASHTO T260 test method in 2010. So far, the experiments have been ongoing and data collected for five years. On the other hand, in 2014, mixes C and M were made according to ASTM C1556 test method. Finally, the study will make comparisons of long-period immersion method and ASTM method based on experimental procedures and test results.
Based on above data and results, this study expects to seek for new methods to extend and increase concrete's durability. In this study, under different curing conditions at high temperatures of 60℃ (1、2、4 days) and 80℃ (3 days、4 days、3 days + 200℃ oven-dry 12 hours), to observe whether the concrete quality and durability will be improved. There are some tests used for this study to evaluate the effects of maintenance methods and maintenance period, including compressive strength test, porosity test, pore size distribution and resistivity test.
From the test results, more cholride ions penetrated into concrete after long immersion duration. But, with ASTM C1556 test method, the aging concrete will get higher hydration degree, and caused the chloride ions hard to penetrate into concrete body, and lower down the instant diffusion coefficient. Therefore, under the effectiveness of chloride ions penetrations, ASTM C1556 test method is recommended for concrete service life calcuations. This method can simulate the characteristic of diffusion coefficient decreased whenever ageing time increased.
By comparing with room temperature maintenance method, the best curing method was found to be 80℃ high temperature hot water curing for 4 days; with which, it can effectively increase the concrete quality and service life by decreasing porosity and resisting chloride ions' diffusions.
行政院原子能委員會:http://www.aec.gov.tw/。
台灣電力公司:http://www.taipower.com.tw/。
王茂齡(1987),輸送現象,高立圖書有限公司。
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
卓世偉,「加速氯離子移動試驗探討氯離子於水泥基複合材料中之傳輸行為」,博士論文,國立臺灣海洋大學材料工程研究所,基隆 (2002)。
陳仕豪,「氯離子入侵混凝土之擴散係數時間效應與飛灰之影響」,碩士論文,國立中央大學土木工程研究所,中壢(2010)。
羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2012)。
牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,中壢(2014)。
彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
DataFit (URL):http://www.curvefitting.com/.
Life-365 (URL):http://www.life-365.org/.
Ann, K. Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures,”Construction and Building Materials, Vol.23, pp. 239- 245.
ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
Chalee, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009),“Predicting the chloride penetration of fly ash concrete in seawater,” Marine Structures, Vol. 22, No.1, pp. 341-353.
Korpa, A., Trettin, R. (2006),“ The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: Comparison between freeze-drying (F-drying),D-drying, P-drying and oven-drying methods” Cement and Concrete Research, Vol. 36, pp. 634-649.
“Life_-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
Lee, N. P. and Chisholm D. H., Reactive Powder Concrete., Building Research Levy., Australia, (2005).
Mangat, P. S., and Molloy, B. T. (1994), “Prediction of long term chloride concentration in concrete,” Material and Structures, Vol. 27, pp. 338-346.
Mendes, A., Sanjayan, J. G., Gates, W. P. and Collins, F. (2012), “The influence of water adsorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event,” Cement and Concrete Composites, Vol. 34, No. 9, pp. 1067-1074.
Metha, P. K., Monterio, P.J.M., Concrete, Microstructure, Properties and Materials,McGraw-Hill, London,(2006).
Nokken, M., Boddy, A., Hooton, R. D., and Thomas, M. D. A. (2006), “Time dependent diffusion in concrete−three laboratory studies,” Cement and Concrete Research, Vol. 36, No. 1, pp. 200-207.
Papadakis V. G. (2000), “Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress,” Cement and Concrete Research, Vol. 30, No. 2, pp.291-299.
Sherman, R. M., David, M. B., and Pfeifer, D. W. (1996), “Durability aspects of precast prestressed Concrete-Part 1 and 2,” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Song, H.-W., Lee, C.-H., and Ann, K. Y. (2008), “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and Concrete Composites, Vol. 30, pp. 113-121.
Stanish, K., and Thomas, M. (2003), “The use of bulk diffusion tests to establish time-dependent concrete chloride difftsion coefficients,” Cement and Concrete Research, Vol. 33, pp. 55-62.
Xi-ling, Z., Sheng, Z. and You-jun. (2010), “Effect of curing system on the strength and drying shrinkage of RPC,” Concrete, No. 246, pp. 42-44.
Young, J. F., Mindess, S., and Darwin, D. (2002), Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Zibara, H. R., Pérezfki, B., Hooton, D. M., and Thomas, M. D. A. (2000), ”A study of the effect of chloride binding on service life predictions,” Cement and Concrete Research, Vol. 30, pp. 1215-1223.
Zanni, H., M. Cheyrezy, V. Maret, S. Philippot and Nieto P. (1996), “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29Si NMR,” Cement and Concrete Research, Vol. 26, No. 1, pp.93-100.