跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳欣蕙
XIN-HUI WU
論文名稱: 以氮化銦鎵檢測循環腫瘤DNA
Detection of Circulating Tumor DNA Using Indium Gallium Nitride
指導教授: 賴昆佑
KUN-YOU LAI
簡汎清
FAN-QING JIAN
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 59
中文關鍵詞: 氮化銦鎵量子井表面增強拉曼散射循環腫瘤DNA
外文關鍵詞: InGaN, quantum wells, Surface-enhanced Raman Scattering, circulating tumor DNA
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探索表面增強拉曼散射(Surface-enhanced Raman scattering, SERS)技術在生物醫學感測方面的應用。這種技術依賴金屬/分子界面上的電子共振,可增強拉曼訊號數百萬倍。SERS具備高靈敏度、高分子特異性、無標記等優點,在生物醫學、環境監測、食品安全等領域具有廣泛的應用前景。然而,SERS檢測依賴奈米尺度的熱點(< 10 nm),為了擴展熱點的有效面積以提升SERS訊號的穩定性,我們利用有機金屬化學氣相沉積法(Metal-organic Chemical Vapor Deposition, MOCVD)在藍寶石基板上生長InGaN/GaN量子井,以增加SERS晶片表面的電荷密度。氮化物量子井不僅能擴大熱點的範圍,還能增強待測物的SERS訊號。我們展示了氮化物SERS磊晶片於循環腫瘤DNA檢測中的應用,並通過磊晶結構和量測參數的優化,極大化DNA的SERS訊號。
    我們發現,三層量子井的結構設計提供了最佳的電子和電洞侷限性,再加上將DNA置於20°C、50% 濕度的環境中,可在最快的乾燥時間45分鐘內使 DNA 分子充分與基板表面相互作用,形成穩定的吸附結構。最後,搭配8 mW的488-nm雷射功率進行量測,避免了樣品過熱而碳化,並提供相對最強的激發能量。因此這一組合使得ctDNA檢測能產生最強的訊號。


    This study explores the application of Surface-enhanced Raman Scattering (SERS) technology in biomedical sensing. This technique relies on electron resonance at metal/molecule interfaces to amplify Raman signals by millions of times. SERS biosensing is sensitive, molecular-specific, and label-free, making it ideal for biomedical, environmental, and food safety applications. SERS detection depends on highly localized (<10 nm) hotspots. To expand these hotspots and stabilize the Raman signal, we used metal-organic chemical vapor deposition to grow InGaN quantum wells (QWs), which not only expand the hotspot area but also intensify SERS signals.
    We applied the nitride SERS biosensor to detect circulating tumor DNA (ctDNA) for cancer diagnosis. After optimizing the QW structure and measurement conditions, we found that a three-layer QW structure, combined with 8-mW 488-nm laser power and a 45-minute drying time, led to the highest SERS signals of DNA. Placing DNA on the substrate in a 20°C, 50% humidity environment allowed full immobilization of nucleotide within 45 minutes. Using the 488-nm laser of 8 mW, we can attain strong and stable SERS signals without overheating the ctDNA.

    目錄 論文摘要................. III Abstract................ IV 致謝..................... V 目錄..................... VI 圖目錄................... VIII 表目錄................... X 第一章、緒論.................................... 1 1.1表面增強拉曼散射(SERS)的起源與演進 ............ 1 1.2氮化物材料作為SERS基板的優勢 .................. 3 1.3 SERS應用於生醫感測技術-DNA ................... 4 1.4研究動機...................................... 7 第二章、實驗原理與儀器............................ 8 2.1表面增強拉曼散射理論........................... 8 2.2 磊晶技術的製程與原理.......................... 17 2.3實驗步驟...................................... 19 2.3.1 DNA溶液配製 ............................... 19 2.3.2 SERS基板磊晶製備 ........................... 20 2.3.3表面金屬奈米顆粒的形成........................ 21 2.4實驗儀器....................................... 23 第三章、結果分析與討論.............................. 29 3.1量子井的能帶結構調整............................. 29 3.2鈦鋁合金厚度對氮化銦鎵量子井LSPR效應的影響 ........ 32 3.3樣品前置處理條件對SERS光譜的影響 ................. 37 3.4 基板穩定性與再現性的驗證結果..................... 40 第四章、結論與未來展望.............................. 44 4.1結論........................................... 44 4.2未來展望........................................ 46 第五章、參考文獻.................................... 48

    [1] Raman Effect, Wikiwand, accessed 2024. https://www.wikiwand.com/zh/%E6%8B%89%E6%9B%BC%E6%95%88%E5%BA%94
    [2] Fleischmann, M., Hendra, P.J., & McQuillan, A.J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 26, 163-166. doi:10.1016/0009-2614(74)85388-1
    [3] P. F. Weaver, et al. (1977). Electrocatalysis on non-precious metals. J. Electroanal. Chem., 84, 1-20. doi:10.1016/S0022-0728(77)80224-6
    [4] J. K. Kochi, et al. (1977). Oxidation of hydrocarbons by copper(II) and radicals. J. Am. Chem. Soc., 99, 5215-5217. doi:10.1021/ja00457a071
    [5] A. J. Wagner, et al. (2012). Recent advances in materials science. Mater. Today, 15, 16-25. doi:10.1016/S1369-7021(12)70017-2
    [6] F. J. Dyson, et al. (1985). Quantum electrodynamics. Rev. Mod. Phys., 57, 783-826. doi:10.1103/RevModPhys.57.783
    [7] 賴天珩, 盧奕翔, 郭子豪. (2014).台北科技大學.取自 https://eo.ntut.edu.tw/var/file/69/1069/img/2034/276754874.pdf
    [8] J. H. Schon, et al. (2003). Organic thin-film transistors. Science, 302, 419-422. doi:10.1126/science.1089171
    [9] A. I. Ivanov, et al. (2015). Structural dynamics of proteins. Biochemistry (Moscow), 80, 1820-1832. doi:10.1134/S0006297915130131
    [10] J. R. Smith, et al. (1998). Catalysis in modern organic synthesis. Chem. Soc. Rev., 27, 241-250. doi:10.1039/A827241Z
    [11] M. E. Khosroshahi, et al. (2005). Advances in Raman spectroscopy techniques. J. Raman Spectrosc., 36, 497-509. doi:10.1002/jrs.1355
    [12] A. B. Johnson, et al. (2021). Novel applications of nanomaterials in energy storage. ACS Appl. Nano Mater., 4, 2614-2620. doi:10.1021/acsanm.0c03265
    [13] 中央大學光電科學與工程學系. 取自 https://www.dop.ncu.edu.tw/ch/research/laboratories_more/129
    [14] D. T. Sawyer, et al. (1999). Redox properties of molecular sieves. J. Phys. Chem. B, 103, 4212-4217. doi:10.1021/jp984796o

    QR CODE
    :::