跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪以倢
Yi-Jie Hung
論文名稱: 麩胺酸誘導阿拉伯芥的防禦反應與根毛伸長
Glutamate induces defense response and root hair elongation in Arabidopsis
指導教授: 葉靖輝
Ching-Hui Yeh
謝明勳
Ming-Hsiun Hsieh
口試委員:
學位類別: 碩士
Master
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 145
中文關鍵詞: 麩胺酸阿拉伯芥根毛發育植物免疫水楊酸茉莉酸
外文關鍵詞: Glutamate, Arabidopsis, root hair elongation, plant immunity, salicylic acid, jasmonic acid
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人研究已證實,麩胺酸(Glu)作為初級氮同化的產物之一,能夠誘導植物防禦反應,但其具體機制尚未明確。本研究深入分析了Glu作為唯一氮源對阿拉伯芥生長發育及免疫反應的影響。我們發現,當Glu作為唯一氮源時,顯著抑制了主根生長,同時促進側根延伸,與先前研究結果一致。此外,Glu增加了花青素的積累,並強烈誘導了水楊酸(SA)和茉莉酸(JA)合成相關基因的表達,顯著增強了植物的抗病性。值得注意的是,我們還發現Glu能顯著促進根毛發育,並可能通過水楊酸、茉莉酸和乙烯三種防禦相關信號途徑調控。然而,Glu誘導的根毛生長機制尚需進一步深入探討。


    Previous studies have demonstrated that glutamate (Glu), a product of primary nitrogen assimilation, can induce plant defense responses, though the underlying mechanisms remain unclear. In this study, we further investigated the effects of using Glu as the sole nitrogen source on the growth, development, and immune responses of Arabidopsis. Our results showed that Glu as the sole nitrogen source significantly inhibited primary root growth while promoting lateral root elongation, consistent with previous findings. Furthermore, Glu enhanced anthocyanin accumulation and strongly induced the expression of genes involved in salicylic acid (SA) and jasmonic acid (JA) biosynthesis, leading to a marked increase in plant disease resistance. Notably, we also observed that Glu significantly promoted root hair development, likely regulated through the SA, JA, and ethylene (ET) defense-related signaling pathways. However, the mechanism of Glu-induced root hair growth requires further investigation, as it appears to differ from pathogen-induced root hair responses, suggesting distinct signaling pathways may be involved.

    摘要 ........................................................................................................................................... iii Abstract ..................................................................................................................................... iiii 致謝 ............................................................................................................................................ ii Contents ..................................................................................................................................... iv List of figure ............................................................................................................................ viii List of appendix .......................................................................................................................... x 1-1 Primary nitrogen assimilation .......................................................................................... 1 1-2 Metabolic fates of Glu ...................................................................................................... 1 1-3 Glu is a wound signal ....................................................................................................... 5 1-5 Defense hormone.............................................................................................................. 7 1-5-1 Salicylic acid ................................................................................................................. 8 1-5-2 Jasmonic acid ................................................................................................................ 9 1-5-3 Ethylene ...................................................................................................................... 10 1-5-4 Defense hormonal pathways and Glu in plant ............................................................ 10 1-6 Root hair development ................................................................................................... 11 1-6-1 Nitrogen deficiency-driven hormonal regulation of root development ...................... 11 v 1-6-2 Pathogen-triggered root hair elongation and hormonal interactions........................... 12 1-6-3 Genetic regulation of root hair development .............................................................. 13 1-7 Aim of our research ........................................................................................................ 13 Materials and methods .............................................................................................................. 15 2-1 Plant materials and growth conditions ........................................................................... 15 2-2 Protein extraction and immunoblot assay ...................................................................... 15 2-3 RNA extraction and RT-qPCR analysis .......................................................................... 16 2-4 RNA-seq analysis ........................................................................................................... 18 2-5 Glu pretreatments and pathogen infection assays .......................................................... 19 2-6 Histochemical GUS assay .............................................................................................. 20 2-7 Confocal microscopy...................................................................................................... 20 2-8 Anthocyanin quantification ............................................................................................ 21 2-9 Root hair imaging and length quantification .................................................................. 21 Result ........................................................................................................................................ 23 3-1 The effect of Glu on Arabidopsis seedlings ................................................................... 23 3-2 Glu inhibits auxin response and root stem cell niche establishment .............................. 24 3-3 Glu induces anthocyanin regulatory genes..................................................................... 24 3-4 Glu affects the gene expression of primary N assimilation ........................................... 25 vi 3-5 Glu induces SA and JA biosynthetic genes .................................................................... 27 3-6 Glu induces SA pathway ................................................................................................ 28 3-7 Glu enhances disease resistance. .................................................................................... 29 3-8 Glu induces genes enriched in defense and stress .......................................................... 29 3-9 Glu induces root hair growth .......................................................................................... 30 3-10 Glu inhibits GL2 expression ......................................................................................... 31 3-11 Glu induces root hair regulatory gene expression ........................................................ 31 3-12 Glu-induced root hair growth is alleviated in SA biosynthetic and signaling mutants. ................................................................................................................................ 32 3-13 Glu-induced root hair growth is blocked by JA inhibitor ............................................ 33 3-14 Glu-induced root hair growth is blocked by ethylene inhibitor. .................................. 34 3-15 Nitrogen deficiency-induced root hair elongation is not affected in SA biosynthetic and signaling mutants. .......................................................................................................... 35 Discussion ................................................................................................................................. 37 4-1 Glu's regulation of GS and GOGAT in nitrogen metabolism......................................... 37 4-2 Glu induces stress responses and secondary metabolism .............................................. 39 4-3 Glu induces plant defense and immune responses ......................................................... 41 4-4 Differential roles of Glu and pathogen signaling in root hair elongation ...................... 43 4-5 Future research on Glu-induced receptors and defense pathways in plants ................... 46 vii References ................................................................................................................................ 49 Figures ...................................................................................................................................... 62 Appendix .................................................................................................................................. 79

    1. Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume,
    L., Noh, Y. S., Amasino, R., & Scheres, B. (2004). The PLETHORA genes
    mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1), 109–120.
    2. Aljuaid, B. S., & Ashour, H. (2022). Exogenous γ-Aminobutyric Acid (GABA)
    Application Mitigates Salinity Stress in Maize Plants. Life (Basel, Switzerland),
    12(11), 1860.
    3. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses.
    Plant molecular biology, 69(4), 473–488.
    4. Bates, T.R., and Lynch, J.P. (2000). The efficiency of Arabidopsis root hairs in
    phosphorus acquisition. Plant Physiol. 124: 991–998.
    5. Bernard, S.M., and Habash, D.Z. (2009). The importance of cytosolic glutamine
    synthetase in nitrogen assimilation and recycling. New Phytol. 182: 608–620.
    6. Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not Just a Metabolite. Trends
    in plant science, 21(10), 811–813.
    7. Broekaert, W.F., Delauré, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The
    role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393
    416.
    8. Bruex, A., Kainkaryam, R. M., Wieckowski, Y., Kang, Y. H., Bernhardt, C., Xia,
    Y., Zheng, X., Wang, J. Y., Lee, M. M., Benfey, P., Woolf, P. J., & Schiefelbein,
    J. (2012). A gene regulatory network for root epidermis cell differentiation in
    Arabidopsis. PLoS genetics, 8(1), e1002446.
    9. Campbell, W.H. (1996). Nitrate reductase biochemistry comes of age. Plant
    Physiol. 111: 355–361.
    49
    10. Chehab, E. W., Kim, S., Savchenko, T., Kliebenstein, D., Dehesh, K., & Braam, J.
    (2011). Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic
    acid-producing mutant. Plant physiology, 156(2), 770–778.
    11. Chen, P., Ge, Y., Chen, L., Yan, F., Cai, L., Zhao, H., Lei, D., Jiang, J., Wang, M.,
    & Tao, Y. (2022). SAV4 is required for ethylene-induced root hair growth
    through stabilizing PIN2 auxin transporter in Arabidopsis. The New phytologist,
    234(5), 1735–1752.
    12. Chen, S., & Wang, S. (2019). GLABRA2, A Common Regulator for Epidermal
    Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis.
    International journal of molecular sciences, 20(20), 4997.
    13. Chiu, J., DeSalle, R., Lam, H. M., Meisel, L., & Coruzzi, G. (1999). Molecular
    evolution of glutamate receptors: a primitive signaling mechanism that existed
    before plants and animals diverged. Molecular biology and evolution, 16(6), 826
    838.
    14. Coruzzi G. M. (2003). Primary N-assimilation into Amino Acids in Arabidopsis.
    The arabidopsis book, 2, e0010.
    15. De Rybel, B., Vassileva, V., Parizot, B., et al. (2010). A novel aux/IAA28
    signaling cascade activates GATA23-dependent specification of lateral root
    founder cell identity. Curr. Biol. 20: 1697–1706.
    16. Delteil, A., Gobbato, E., Cayrol, B., Estevan, J., Michel-Romiti, C., Dievart, A.,
    Kroj, T., & Morel, J. B. (2016). Several wall-associated kinases participate
    positively and negatively in basal defense against rice blast fungus. BMC plant
    biology, 16, 17.
    17. Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011).
    Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9: e0156.
    50
    18. Dennison, K. L., & Spalding, E. P. (2000). Glutamate-gated calcium fluxes in
    Arabidopsis. Plant physiology, 124(4), 1511–1514.
    19. Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione
    transferases in plant secondary metabolism. Phytochemistry, 71(4), 338–350.
    20. Dixon, R.A., and Paiva, N.L. (1995). Stress-induced phenylpropanoid
    metabolism. Plant Cell 7: 1085–1097.
    21. Dubois, M., Van den Broeck, L., & Inzé, D. (2018). The Pivotal Role of Ethylene
    in Plant Growth. Trends in plant science, 23(4), 311–323.
    22. Dubreuil-Maurizi, C., and Poinssot, B. (2012). Role of glutathione in plant
    signaling under biotic stress. Plant Signal. Behav. 7: 210–212.
    23. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev.
    Phytopathol. 42: 185–209.
    24. Ferrer, J.L., Austin, M.B., Stewart, C., and Noel, J.P. (2008). Structure and
    function of enzymes involved in the biosynthesis of phenylpropanoids. Plant
    Physiol. Biochem. 46: 356–370.
    25. Foehse D, Jungk A. 1983. Influence of phosphate and nitrate supply on root hair
    formation of rape, spinach and tomato plants. Plant and Soil 74, 359–368.
    26. Fontaine, J. X., Tercé-Laforgue, T., Armengaud, P., Clément, G., Renou, J. P.,
    Pelletier, S., Catterou, M., Azzopardi, M., Gibon, Y., Lea, P. J., Hirel, B., &
    Dubois, F. (2012). Characterization of a NADH-dependent glutamate
    dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in
    root carbon and nitrogen metabolism. The Plant cell, 24(10), 4044–4065.
    27. Forde, B. G., & Roberts, M. R. (2014). Glutamate receptor-like channels in plants:
    a role as amino acid sensors in plant defence?. F1000prime reports, 6, 37.
    51
    28. Forde, B.G., and Lea, P.J. (2007). Glutamate in plants: metabolism, regulation,
    and signalling. J. Exp. Bot. 58: 2339–2358.
    29. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the
    redox hub. Plant Physiol. 155: 2–18.
    30. Foyer, C.H., Parry, M.A.J., and Noctor, G. (2003). Markers and signals associated
    with nitrogen assimilation in higher plants. J. Exp. Bot. 54: 585–593.
    31. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and
    necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227.
    32. Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant
    development: structure, signalling, regulation and response mechanisms. Plant
    biology (Stuttgart, Germany), 23(6), 894–904.
    33. Goto, Y., Maki, N., Ichihashi, Y., Kitazawa, D., Igarashi, D., Kadota, Y., &
    Shirasu, K. (2020). Exogenous Treatment with Glutamate Induces Immune
    Responses in Arabidopsis. Molecular plant-microbe interactions : MPMI, 33(3),
    474–487.
    34. Grierson, C., Schiefelbein, J., and Ringli, C. (2014). Root hairs. Arabidopsis Book
    12: e0172.
    35. Hanson, A. D., & Gregory, J. F., 3rd (2011). Folate biosynthesis, turnover, and
    transport in plants. Annual review of plant biology, 62, 105–125.
    36. Hasan, M. M., Alabdallah, N. M., Alharbi, B. M., Waseem, M., Yao, G., Liu, X.
    D., Abd El-Gawad, H. G., El-Yazied, A. A., Ibrahim, M. F. M., Jahan, M. S., &
    Fang, X. W. (2021). GABA: A Key Player in Drought Stress Resistance in Plants.
    International journal of molecular sciences, 22(18), 10136.
    37. Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in
    plants: biosynthesis and physiological role in environmental stress tolerance.
    52
    Physiology and molecular biology of plants: an international journal of functional
    plant biology, 23(2), 249–268.
    38. Hodges, M. (2002). Enzyme redundancy and the importance of 2-oxoglutarate in
    plant ammonium assimilation. J. Exp. Bot. 53: 905–916.
    39. Howe, G.A., Major, I.T., and Koo, A.J.K. (2018). Modularity in jasmonate
    signaling for multistress resilience. Annu. Rev. Plant Biol. 69: 387–415.
    40. Hsieh MH, Goodman HM. The Arabidopsis IspH homolog is involved in the
    plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol.
    2005:138(2):641–653.
    41. Hu, Q. Q., Shu, J. Q., Li, W. M., & Wang, G. Z. (2021). Role of Auxin and
    Nitrate Signaling in the Development of Root System Architecture. Frontiers in
    plant science, 12, 690363.
    42. Huang, J., Zhao, X., Bürger, M., Chory, J., and Wang, X. (2023). The role of
    ethylene in plant temperature stress response. Trends Plant Sci. 28: 808–824.
    43. Iqbal, N., Trivellini, A., Masood, A., Ferrante, A., & Khan, N. A. (2013). Current
    understanding on ethylene signaling in plants: the influence of nutrient
    availability. Plant physiology and biochemistry : PPB, 73, 128–138.
    44. Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T., and
    Takahashi, H. (2004). Kinetic properties and ammonium-dependent regulation of
    cytosolic glutamine synthetase isozymes in Arabidopsis. J. Biol. Chem. 279:
    16598–16605.
    45. Jia, Z., Giehl, R. F. H., Hartmann, A., Estevez, J. M., Bennett, M. J., & von
    Wirén, N. (2023). A spatially concerted epidermal auxin signaling framework
    steers the root hair foraging response under low nitrogen. Current biology : CB,
    33(18), 3926–3941.e5.
    53
    46. Juárez, S. P., Mangano, S., & Estevez, J. M. (2015). Improved ROS measurement
    in root hair cells. Methods in molecular biology (Clifton, N.J.), 1242, 67–71.
    47. Kadotani, N., Akagi, A., Takatsuji, H., Miwa, T., & Igarashi, D. (2016).
    Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC
    plant biology, 16, 60.
    48. Kan, C.C., Chung, Y.S., Juo, Y.A., Tsai, Y.J., and Liao, Y.J. (2017). Exogenous
    glutamate rapidly induces the expression of genes involved in metabolism and
    defense responses in rice roots. J. Plant Physiol. 215: 24–34.
    49. Kent, W.J. (2002). BLAT—the BLAST-like alignment tool. Genome Res. 12:
    656–664.
    50. Klee, H.J., and Tieman, D.M. (2017). The tomato ethylene receptor family: form
    and function in development and stress responses. Plant Cell 13: 1917–1931.
    51. Konno, M., Ooishi, M., & Inoue, Y. (2003). Role of manganese in low-pH
    induced root hair formation in Lactuca sativa cv. Grand Rapids seedlings. Journal
    of plant research, 116(4), 301–307.
    52. Kwon, T., Sparks, J. A., Liao, F., & Blancaflor, E. B. (2018). ERULUS Is a
    Plasma Membrane-Localized Receptor-Like Kinase That Specifies Root Hair
    Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations. The Plant
    cell, 30(6), 1173–1177.
    53. Labboun, S., Tercé-Laforgue, T., Roscher, A., Bedu, M., Restivo, F. M., Velanis,
    C. N., Skopelitis, D. S., Moschou, P. N., Roubelakis-Angelakis, K. A., Suzuki, A.,
    & Hirel, B. (2009). Resolving the role of plant glutamate dehydrogenase. I. In
    vivo real time nuclear magnetic resonance spectroscopy experiments. Plant & cell
    physiology, 50(10), 1761–1773.
    54
    54. Lam, H. M., Chiu, J., Hsieh, M. H., Meisel, L., Oliveira, I. C., Shin, M., &
    Coruzzi, G. (1998). Glutamate-receptor genes in plants. Nature, 396(6707), 125
    126.
    55. Lea, P. J., & Miflin, B. J. (1974). Alternative route for nitrogen assimilation in
    higher plants. Nature, 251(5476), 614–616.
    56. Lee KT, Liao HS, Hsieh MH. Glutamine metabolism, sensing, and signaling in
    plants. Plant Cell Physiol. 2023:64(12):1466–1481.
    57. Liao HS, Chung YH, Hsieh MH. Glutamate: a multifunctional amino acid in
    plants. Plant Sci. 2022a:318:111238.
    58. Liao HS, Yang CC, Hsieh MH* (2022) Nitrogen deficiency- and sucrose-induced
    anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in
    Arabidopsis. J Exp Bot 73: 3726-3742
    59. Ludwig-Müller J. (2011). Auxin conjugates: their role for plant development and
    in the evolution of land plants. Journal of experimental botany, 62(6), 1757–1773.
    60. Martin, R. E., Marzol, E., Estevez, J. M., & Muday, G. K. (2022). Ethylene
    signaling increases reactive oxygen species accumulation to drive root hair
    initiation in Arabidopsis. Development (Cambridge, England), 149(13),
    dev200487.
    61. Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M.,
    Grandjean, O., Kronenberger, J., Valadier, M. H., Feraud, M., Jouglet, T., &
    Suzuki, A. (2006). Glutamine synthetase-glutamate synthase pathway and
    glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in
    tobacco. Plant physiology, 140(2), 444–456.
    55
    62. Masucci, J.D., and Schiefelbein, J.W. (1996). Hormones act downstream of TTG
    and GL2 to promote root hair outgrowth during epidermis development in the
    Arabidopsis root. Plant Cell 8: 1505–1517.
    63. Michaeli, S., & Fromm, H. (2015). Closing the loop on the GABA shunt in plants:
    are GABA metabolism and signaling entwined? Frontiers in plant science, 6, 419.
    64. Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E.,
    Gilliham, M., Liu, L. H., Obermeyer, G., & Feijó, J. A. (2011). Glutamate
    receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil
    D-serine. Science (New York, N.Y.), 332(6028), 434–437.
    65. Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive
    oxygen species signalling in plant stress responses. Nature reviews. Molecular cell
    biology, 23(10), 663–679.
    66. Muthamilarasan, M., & Prasad, M. (2013). Plant innate immunity: an updated
    insight into defense mechanism. Journal of biosciences, 38(2), 433–449.
    67. Nadarajah K. K. (2020). ROS Homeostasis in Abiotic Stress Tolerance in Plants.
    International journal of molecular sciences, 21(15), 5208.
    68. Németh, E., Nagy, Z., & Pécsváradi, A. (2018). Chloroplast Glutamine
    Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its
    Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its
    Subunits. Frontiers in plant science, 9, 191.
    69. Németh, E., Nagy, Z., & Pécsváradi, A. (2018). Chloroplast Glutamine
    Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its
    Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its
    Subunits. Frontiers in plant science, 9, 191.
    56
    70. Owen AG, Jonse DL. Competition for amino acids between wheat roots and
    rhizosphere microorganisms and the role of amino acids in plant N acquisition.
    Soil Biol Biochem. 2001:33(4–5):651–657.
    71. Pecenková, T., Hála, M., Kulich, I., Krenek, P., and Žárský, V. (2017). Pathogen
    induced root hair growth in Arabidopsis thaliana. Ann. Bot. 119: 779–792.
    72. Pei, Z., Huang, Y., Ni, J., Liu, Y., & Yang, Q. (2024). For a Colorful Life: Recent
    Advances in Anthocyanin Biosynthesis during Leaf Senescence. Biology, 13(5),
    329.
    73. Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic Acid: Biosynthesis and
    Signaling. Annual review of plant biology, 72, 761–791.
    74. Qi, Z., Stephens, N. R., & Spalding, E. P. (2006). Calcium entry mediated by
    GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant
    physiology, 142(3), 963–971.
    75. Rekhter, D., Lüdke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V.,
    Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived
    biosynthesis of the plant stress hormone salicylic acid. Science (New York, N.Y.),
    365(6452), 498–502.
    76. Robinson D, Rorison IH. 1987. Root hairs and plant-growth at low nitrogen
    availabilities. New Phytologist 107, 681–693.
    77. Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., &
    Zhang, K. (2019). Jasmonic Acid Signaling Pathway in Plants. International
    journal of molecular sciences, 20(10), 2479.
    78. Rubio-Wilhelmi, M.delM., Sanchez-Rodriguez, E., Rosales, M. A., Blasco, B.,
    Rios, J. J., Romero, L., Blumwald, E., & Ruiz, J. M. (2011). Cytokinin-dependent
    57
    improvement in transgenic P(SARK)::IPT tobacco under nitrogen deficiency.
    Journal of agricultural and food chemistry, 59(19), 10491–10495.
    79. Schaller, A., and Weiler, E.W. (1997). Molecular cloning and characterization of
    12-oxophytodienoate reductase from tomato: induction by wounding and substrate
    specificity. Arch. Biochem. Biophys. 336: 201–207.
    80. Shibata, M., Breuer, C., Kawamura, A., Clark, N. M., Rymen, B., Braidwood, L.,
    Morohashi, K., Busch, W., Benfey, P. N., Sozzani, R., & Sugimoto, K. (2018).
    GTL1 and DF1 regulate root hair growth through transcriptional repression of
    ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. Development (Cambridge,
    England), 145(3), dev159707.
    81. Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., & Liu, D. (2016). The Molecular
    Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate
    Starvation. PLoS genetics, 12(7), e1006194.
    82. Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li,
    C., Qi, T., & Xie, D. (2014). Interaction between MYC2 and ETHYLENE
    INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling
    in Arabidopsis. The Plant cell, 26(1), 263–279.
    83. Taira, M., Valtersson, U., Burkhardt, B., & Ludwig, R. A. (2004). Arabidopsis
    thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria
    and chloroplasts. The Plant cell, 16(8), 2048–2058.
    84. Tam, Y. Y., Epstein, E., & Normanly, J. (2000). Characterization of auxin
    conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate,
    indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant physiology, 123(2),
    589–596.
    58
    85. Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor Kinases in Plant-Pathogen
    Interactions: More Than Pattern Recognition. The Plant cell, 29(4), 618–637.
    86. Tarkowski, Ł. P., Signorelli, S., & Höfte, M. (2020). γ-Aminobutyric acid and
    related amino acids in plant immune responses: Emerging mechanisms of action.
    Plant, cell & environment, 43(5), 1103–1116.
    87. Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of
    Arabidopsis plastid gene expression and RNA editing in non- photosynthetic
    tissues. Plant Mol Biol. 2013:82(4–5):375–392.
    88. Vatter T, Neuhäuser B, Stetter M, Ludewig U. 2015. Regulation of length and
    density of Arabidopsis root hairs by ammonium and nitrate. Journal of Plant
    Research 128, 839–848.
    89. Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for
    plant-environment interaction. The arabidopsis book, 8, e0140.
    90. Vidal, E.A., Alvarez, J.M., Moyano, T.C., and Gutiérrez, R.A. (2020). Nitrate
    signaling and early responses in Arabidopsis roots. J. Exp. Bot. 71: 622–631.
    91. Vissenberg, K., Claeijs, N., Balcerowicz, D., & Schoenaers, S. (2020). Hormonal
    regulation of root hair growth and responses to the environment in Arabidopsis.
    Journal of experimental botany, 71(8), 2412–2427.
    92. Vissenberg, K., Claeijs, N., Balcerowicz, D., and Schoenaers, S. (2020).
    Hormonal regulation of root hair growth and responses to the environment in
    Arabidopsis. J. Exp. Bot. 71: 2412–2427.
    93. Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic acid, a
    multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177–206.
    59
    94. Wang, N.N., Shih, M.C., and Li, N. (2005). The GUS reporter-aided analysis of
    the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5,
    and AtACS7 induced by hormones and stresses. J. Exp. Bot. 56: 909–920.
    95. Wang, P., Ji, S., & Grimm, B. (2022). Post-translational regulation of metabolic
    checkpoints in plant tetrapyrrole biosynthesis. Journal of experimental botany,
    73(14), 4624–4636.
    96. Wasternack, C., and Song, S. (2017). Jasmonate signaling in plant stress responses
    and development. Plant Cell 29: 153–170.
    97. Winter, G., Todd, C. D., Trovato, M., Forlani, G., & Funck, D. (2015).
    Physiological implications of arginine metabolism in plants. Frontiers in plant
    science, 6, 534.
    98. Xu, B., Long, Y., Feng, X., Zhu, X., Sai, N., Chirkova, L., Betts, A., Herrmann, J.,
    Edwards, E. J., Okamoto, M., Hedrich, R., & Gilliham, M. (2021). GABA
    signalling modulates stomatal opening to enhance plant water use efficiency and
    drought resilience. Nature communications, 12(1), 1952.
    99. Xue, C., Li, W., Shen, R., & Lan, P. (2021). PERK13 modulates phosphate
    deficiency-induced root hair elongation in Arabidopsis. Plant science : an
    international journal of experimental plant biology, 312, 111060.
    100. Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., & Wu, J. (2022). The
    glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect
    herbivores in Arabidopsis.
    101. Yu, B., Liu, N., Tang, S., Qin, T., & Huang, J. (2022). Roles of Glutamate
    Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental
    Stimuli. Plants (Basel, Switzerland), 11(24), 3450.
    60
    102. Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., &
    Bahadar, K. (2018). Role of secondary metabolites in plant defense against
    pathogens. Microbial pathogenesis, 124, 198–202.
    103. Zhang, L., Zhang, F., Melotto, M., Yao, J., & He, S. Y. (2017). Jasmonate
    signaling and manipulation by pathogens and insects. Journal of experimental
    botany, 68(6), 1371–1385.
    104. Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the
    Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17),
    2761.
    105. Zhao Y. (2010). Auxin biosynthesis and its role in plant development. Annual
    review of plant biology, 61, 49–64.

    QR CODE
    :::