| 研究生: |
葉人菘 Jen-Sung Yeh |
|---|---|
| 論文名稱: |
應用於矽薄膜化學氣相沉積製程之電子迴旋共振電漿模擬研究 The simulation study of Electron Cyclotron Resonance Plasma for silicon thin film Deposition process |
| 指導教授: |
利定東
Tomi Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 電子迴旋共振化學氣相沉積 、矽薄膜 、電漿模擬 |
| 外文關鍵詞: | ECR-CVD, silicon thin film, plasma simulation |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用COMSOL流體模型軟體模擬電子迴旋共振化學氣相沉積(ECR-CVD)之矽薄膜製程,以蘭摩爾探針(Langmuir probe)結合電漿放射光譜儀(Optical Emission Spectroscopy, OES)作為模擬驗證工具,藉由模擬的方式瞭解其中電漿的基本特性與活性粒子的密度及分佈情況,並探討改變操作參數(微波功率、製程壓力、磁場組態、氫稀釋比)下電漿的變化。
模擬結果顯示,共振區之電子透過迴旋加熱機制吸收了大於90%的微波能量,而受到共振反應影響,電子密度及電子溫度之極大值皆分佈在共振區附近。此外,電漿裡重要活性粒子之分佈情形,主要是由產生的機制不同所造成,其中,SiH3與H主要是由電子碰撞SiH4生成,而SiH2粒子的反應有兩個主要來源,一方面為SiH3互相碰撞生成;另一方面由電子碰撞SiH4所產生。操作參數方面,改變功率主要影響電子密度,電子溫度則無太明顯變化;壓力部分,電子密度及溫度隨壓力上升而明顯降低;而控制主磁場改變不同共振區間可得不同物種濃度分佈;氫稀釋比(H2/SiH4)部分,隨著氫稀釋比的增加將快速地減少SiH3密度,而H原子密度則隨之上升,因此增加氫稀釋比將減少沉積速率,並且增加薄膜之微晶結晶率。最後,數值模擬結果與蘭摩爾探針及OES之實驗量測值作比較,可獲得一致的結果。
This research used COMSOL fluid model software to simulate the silicon thin-film plasma process received from the electron cyclotron resonance chemical vapor deposition (ECR-CVD). This study also used the simulation results to verify the results obtained from Langmuir probe and the Optical Emission Spectroscopy (OES). From such simulation results, we can understand the basic properties of the plasma as well as the distribution and the density of the active species. In addition, we can predict the changes of plasma properties under different operating parameters such as microwave power, pressure, magnetic field and hydrogen dilution ratio (H2/SiH4).
The results of simulation show that electrons in the resonance zone through repeated heating process absorb more than 90% of the microwave energy. Under the influence of resonance in reactions, both electron density (Ne) and electron temperature (Te) have the largest amounts around the resonance zone. The distributions of radicals in the plasma mainly are due to differences in their plasma formation. Thus, SiH3 and H species are generated mainly due to the collisions of an electron and SiH4. On the other hands, SiH2 species are generated as the results of collisions of either 2SiH3 particles or an electron with and SiH4. Power variations will change the electron density, but electron temperature seem not to change much. Increase of pressure will decrease both electron temperature and density. Changing the magnetic field will change the resonance zone as well as the density of different species. Thus, the different species distributions can be obtained by controlling the main magnetic field. When hydrogen dilution ratio increases, SiH3 species will rapidly decrease since H density is increased. Thus, the deposition rate of amorphous silicon (a-Si:H) will decrease and the crystalline fraction of thin films is increased. Finally, these simulation results show a good agreement with the measurement results of Langmuir probe and OES.
[1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2]National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3]Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[4]羅正忠,半導體製程技術導論,歐亞出版社,2006年。
[5]I. H. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, 2002.
[6]魏寶文、趙紅衛著,離子的噴泉,一版,清華大學、暨南大學,北京,2001.
[7]D. J. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[8]A. B. Cambel, M. Cambel, Plasma physics, Boston Heath, 1965.
[9]S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, “Handbook of plasma processing technology Fundamentals”, William Dickson, 1937.
[10]H. R. Kaufman,”Explanation of Bohm diffusion”, J. Vac. Sci. Technol, Vol B, Vol 8, pp. 107-109, 1990.
[11]Smith, L. Donald, Thin Film Deposition: principles and practice, First edition, McGraw-Hill, 1994.
[12]M. Quirk, J. Serda, Semiconductor Manufacturing Technology, Prentice Hall, 2001.
[13]莊達人,VLSI 製造技術,高立圖書有限公司,1996。
[14]J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., Vol 47, pp. 399-459, 1984.
[15]A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, “Solar Energy Materials & Solar Cells”, Vol 78, pp. 3-26, 2003.
[16]A. Matsuda, “Thin-film silicon growth process and solar cell application”, Japanese Journal of Applied Physics, Vol 43, pp. 7909-7920, 2004.
[17]Y. Ruohe, L. Kuixun, S. Wangzhou, L. Xuangying, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[18]M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J. Appl. Phys., Vol 62, pp. 2803-2811, 1987.
[19]Y. Kawai, K. Uchino, H. Muta, S. Kawai, Tobias Rowf, “Development of large diameter ECR plasma source”, Vacuum, Vol 84, pp. 1381-1384, 2010.
[20]T. B. Song, M. Z. Bin, W. Z. Hui, “Measurement of microwave ECR oxygen plasma parameter”, Journal of Wuhan Institute of Technology, 2009.
[21]M. Murata, S. Uchida, K. Kishimoto, M. Tanaka, A. Komori, Y. Kawai, “ECR plasma CVD in different magnetic field configurations”, J.J.A.P., Vol 31, pp. 1499-1502, 1992.
[22]Y. Ueda, Y. Inoue, S. Shinohara and Y. Kawai, “Deposition of large area amorphous silicon films by ECR plasma CVD”, Vacuum, Vol 48, pp. 119-122, 1997.
[23]A. Triska, D. Dennison, H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 20-392, 1975.
[24]R.E. I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[25]J. Robertson, “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol 266-269, pp. 79-83, 2000.
[26]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[27]D. L. Staebler, C. R. Wronski, Appl. Phys. Lett., Vol 31, pp. 292-294, 1977.
[28]A. V. Shah, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, “Material and solar cell research in microcrystalline silicon ”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469-491, 2003.
[29]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MucK, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics”, Solar Energy Materials and Solar Cells, Vol 62, pp. 97-108, 2000.
[30]A. Matsuda, ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1-6, 1999.
[31]R. L. Kinder, M. J. Kushner, “Consequences of mode structure on plasma properties in electron cyclotron resonance sources”, Journal of Vacuum Science & Technology A, Vol 17, pp. 2421-2431, 1998.
[32]C. B. Shin, J. S. Hur, S. G. Oh, “A two-dimensional simulation of electron cyclotron resonance plasma andcomparison with experimental data”, Thin Solid Films, Vol 341, pp. 18-21, 1999.
[33]M. Liu, X. Hu, H. Wu, Q. Wu, G. Yu, Y. Pan, “Two-dimensional simulation of an electron cyclotron resonance plasma source with self-consistent power deposition”, Surface and Coatings Technology, Vol 131, pp. 29-33, 2000.
[34]H. Muta, N. Itagaki, Y. Kawai, “Numerical investigation of the production mechanism of a low-temperature electron cyclotron resonance plasma”, Vacuum, Vol 66, pp. 209-214, 2002.
[35]H. Muta, M. Koga, N. Itagaki, Y. Kawai, “Numerical investigation of a low-electron-temperature ECR plasma in Ar/N2 mixtures”, Surface and Coatings Technology, Vol 171, pp. 157-161, 2003.
[36]Y. Liu, Y. Wang, S. Cui, X. Wang, S. Zheng, X. Wang, “The effects of the operational parameters of the reactor on ECR plasma characteristics”, Vacuum, Vol 80, pp. 1367-1370, 2006.
[37]M. Koga, H. Muta, A. Yonesu, Y. Kawai, “Experimental and numerical investigation of ion temperature in an ECR plasma”, Vacuum, Vol 80, pp. 771-775, 2006.
[38]J. Perrin, O. Leroy, M. C. Bordage, “Cross-sections, rate constants and transport coefficients in silane plasma chemistry”, Contributions Plasma Physics, Vol 36, pp. 3-49, 1996.
[39]G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. G. J. H. M. van Sark, and J. Bezemer, “A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments”, J. Appl. Phys. , Vol 82, pp. 2060-2071, 1997.
[40]E. Meeks, R. S. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg, E. S. Aydil, “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements”, J. Vac. Sci. Technol. A, Vol 16, pp. 544-563, 1998.
[41]M. J. Kushner, “A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon”, J. Appl. Phys. , Vol 63, pp. 2532-2551, 1988.
[42]J. L. Giuliani, V. A. Shamamian, R. E. Thomas, J. P. Apruzese, M. Mulbrandon, R. A. Rudder, R. C. Hendry, A. E. Robson, “Two-dimensional model of a large area, inductively coupled, rectangular plasma source for chemical vapor deposition”, IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol 27, pp. 1317-1328, 1999.
[43]K. D. Bleecker, D. Herrebout, A. Bogaerts, R. Gijbels, P. Descamps, “One-dimensional modelling of a coupled rf plasma in silane/helium, including small concentrations of O2 and N2”, J. Phys. D: Appl. Phys. , Vol 36, pp. 1826-1833, 2003.
[44]P. Haaland, “Dissociative attachment in silane”, J. Chem. Phys. , Vol 93, pp. 4066-4072, 1990.
[45]M. Wakaki, K. Kudo, T. Shibuya 編著,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳譯,化學工業出版社,2010年。
[46]W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 1981.
[47]P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison, C. Dong, “Microwave plasma enhanced CVD of aluminum oxide films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51-58, 2001.
[48]E. M. Campbell, M. D. Rosen, D. W. Phillion, R. H. Price, K. Estabrook, B. F. Lasinski, “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol 43, pp. 54-56, 1983.
[49]A. Francis, U. Czarnetzki, H. F. Döbele, N. Sadeghi, “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796-3798, 1997.
[50]潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[51]李永祥,「TE微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究」,國立中央大學,碩士論文,2011年。
[52]吳昭穎,「TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究」,國立中央大學,碩士論文,2011年。