跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱顯鈞
Hsien-Chun Chiu
論文名稱: 5G NR- 雙符碼週期模式發射機於FPGA之實現
FPGA Implementation of 5G NR Dual Symbol Period Mode Transmitter
指導教授: 陳逸民
Yih-Min Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系在職專班
Executive Master of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 116
中文關鍵詞: 5GNR正交分頻多工發射機邏輯電路FPGA
外文關鍵詞: 5G, NR, OFDM, Transmitter, Logic circuit, FPGA
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第五代通訊技術 (5th Generation , New Radio) 於訊號調變之部分,與前代4G通訊皆採CP-OFDM通訊架構。有別於4G 僅使用15kHz子載波間隔(Sub carrier spacing) ,5G 系統在FR1頻段內共有 15,30,60 三種不同頻率間隔由參數集(Numerologies)所決定,可應用於不同場景 ,且支援通道採混合參數集(Mixed Numerologies)之配置方式。

    依此特點,本論文著重於3GPP-R16規範之5G下行鏈實體層研究,於N78頻段中設計實驗特定規格之下行鏈,其中同步訊號、廣播通道與控制通道、分享通道採用兩種不同子載波間隔分別為30及15 kHz ,以探討於兩種子載波間隔下的訊框架構之目的,進而藉由硬體描述語言設計邏輯電路來產生對應下行鏈基頻訊號,於FPGA平台實現發射機並進行驗證。

    實作過程中,針對兩種子載波間隔的符號週期進行IFFT運算,有鑑於此,如何透過時序邏輯、控制訊號及狀態機等解決方案,來達到不中斷的方式產生符合5G 規格訊號OFDM 訊號,為本論文核心探討之問題。


    In the fifth generation(5G) mobile technology, 3GPP adopted CP-OFDM
    for waveform modulation which is very similar to the usage in LTE. The difference between these two generations is that LTE only uses a fixed 15 kHz sub-carrier spacing in the physical channel while 5G NR-FR1 supports 15kHz, 30kHz, and 60kHz depending on the factor named Numerologies. Moreover, multi-subcarrier spacing is also supported in the same radio frame structure called mixed (or multi) Numerologies.

    According to this feature, this paper focuses on studying the 3GPP-R16 specification of the 5G downlink physical layer and designs a downlink transmission channel with a specific configuration in the N78 operating band. The physical channel of SSB/PBCH and PDCCH/PDSCH are set up in different sub-carrier spacing to discuss the frame structure under the resource grid between two sub-carriers (30, 15 kHz). A hardware circuit is designed by Verilog programming language to generate the corresponding downlink baseband signal, and the transmitter is implemented and verified on the FPGA platform.

    The solution proposed in this paper uses logic circuits to design control signals, state machines, etc., performing IFFT operations on sequences of two symbol period, and generating OFDM signals which meet 5G specifications in an uninterrupted manner is the best result in the experiment.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 一、緒論 - 1 - 1-1 研究動機 - 1 - 二、OFDM 系統介紹 - 2 - 2.1 正交分頻多工 (Orthogonal Frequency Division Multiplexing, OFDM) - 2 - 2.2 循環字首(Cyclic Prefix, CP) - 4 - 2.3 快速傅立葉轉換(Fast Fourier transform , FFT) - 7 - 2.3.1 頻域抽取 - 2基底FFT架構 (DIF- Radix 2 FFT) - 7 - 2.3.2 22基底FFT架構 (Radix 22 FFT) - 10 - 三、5G NR 下行鏈實體層與實驗規格 - 12 - 3.1 5G NR 訊框架構 (5G - Frame structure) - 12 - 3.2 5G NR 實體通道 - 15 - 3.2.1實體傳輸通道 (Transmission Bandwidth) - 15 - 3.2.2 同步訊號與實體廣播通道區塊(Synchronization Signal and PBCH block , SSB) - 19 - 3.2.3 實體層下行控制通道(Physical Downlink Control Channel , PDCCH) - 23 - 3.2.4 實體層下行鏈分享通道(Physical Downlink Share Channel , PDSCH) - 29 - 3.2.5 實驗規格-下行鏈訊框架構(Experimental Specifications - Downlink Framework Structure) - 32 - 四 - 硬體設計 - 33 - 4.1. – 硬體模組概述 - 33 - 4.1.1 - N_FFT mode 與 N_FFT_State - 35 - 4.1.2 – 切換模式(Switch mode) - 36 - 4.2 - 5G 下行鏈實體層計數器 (NR frame structure counter) - 37 - 4.2.1 – 星座圖映射器(QAM mapper) - 38 - 4.2.2 – 同步訊號塊偏移(SSBlock offset) - 40 - 4.2.3 – 控制訊號N_FFT_mode -Switching point - 41 - 4.3 – 子載波配置器模組 (Subcarrier Allocation ,SCA) - 42 - 4.3.1 – 子載波配置器– 狀態機 - 43 - 4.3.2 – 子載波配置器 – 切換模式 - 45 - 4.4 – 2048/1024 快速傅立葉轉換(FFT/IFFT) 模組 - 47 - 4.4.1 快速傅立葉轉換 - Radix 2 架構 - 48 - 4.4.2 快速傅立葉轉換 - Radix 22 架構 - 49 - 4.4.3 FFT與 IFFT - 50 - 4.4.4 旋轉因子設計 - Cordic 演算法 - 51 - 4.4.5 傅立葉逆轉換 – 1K/2K切換模式 - 53 - 4.4.6 Fixed point 解析度 - 61 - 4.5 – 位元反轉排序(Bit reverse ordering) - 63 - 4.5.1 Verilog – 非阻設語句 - 64 - 4.5.2 位元反轉排序模組 – 狀態機 - 65 - 4.5.3 位元反轉排序– 切換模式 - 68 - 4.6 – 循環字首置入器(CP insertion) - 74 - 4.6.1 – 循環字首置入器之硬體設計 - 79 - 4.6.2 – 循環字首狀態機 - 80 - 4.6.3 – 循環字首-長循環字首與切換模式 - 82 - 五、成果驗證 - 85 - 5.1 – FPGA 平台介紹 - 85 - 5.2 – DMA驗證流程 - 86 - 5.3 –商用軟體與實驗結果比較 - 94 - 5.4 –成果延伸應用 - 96 - 六、結論 - 98 - 參考資料 - 99 -

    [1] 38.101-1 ,NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone , Version 16.2.0 , 3GPP ,Jan 2020.

    [2] 38.104 ,NR; Base Station (BS) radio transmission and reception , Version 16.7.0 , 3GPP ,Apr 2021.

    [3] 38.211 , NR; Physical channels and modulation , Version 16.3.0 , 3GPP , Sep 2020.

    [4] 38.212 , NR; Multiplexing and channel coding , Version 16.3.0 , 3GPP , Sep 2020.

    [5] 38.213 , NR; Physical layer procedures for control , Version 16.3.0 , 3GPP , Sep 2020.

    [6] 38.300 , NR; NR and NG-RAN Overall description; Stage-2 , Version 16.6.0 , 3GPP ,Jul 2021.

    [7] 38.331 , NR; Radio Resource Control (RRC); Protocol specification , Version 16.5.0 , 3GPP ,Jul 2021.

    [8] R1‑1721709 Summary of offline discussion on RMSI CORESET configuration , Samsung ,Dec 2017.

    [9] Chang-Hsin Chen , Wern-Ho Sheen ,”IEEE 802.16a Transceiver Design and its Performance Evaluation”, National Chiao Tung University,pp.4-12 ,2003.

    [10] I-Hsiang Wang,” Lecture 8: Orthogonal Frequency Division Multiplexing (OFDM)”, National Taiwan University, Apr 2017.

    [11] CORDIC design in Verilog to produce sine and cosine functions
    (https://www.youtube.com/watch?v=pTgmySlijAs)

    [12] N7631APPC PathWave Signal Generation for 5G NR
    (https://www.keysight.com/us/en/product/N7631APPC/pathwave-signal-generation-5g-nr.html)

    QR CODE
    :::