| 研究生: |
鄭佑善 You-Shan Zheng |
|---|---|
| 論文名稱: |
液滴沉積法應用於表面增強拉曼檢測之研究 |
| 指導教授: |
曹嘉文
Chia-Wen Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 奈米矽 、電化學蝕刻 、拉曼 |
| 外文關鍵詞: | Nanostructured Silicon, Electrochemical Etching, Raman Spectrometry |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面增強拉曼散射( SERS )作為是非破壞性光學檢測,經常被使用檢測各項生物樣本(吡啶、毒品、農藥、蛋白質、食品添加物、DNA和RNA),本實驗選用非結構性的多孔矽作為固態基底,並在其上方沉積銀作為拉曼訊號增強來源,而實驗內容並非側重於單分子檢測或是銀結構的影響,而是著重於實際檢測與實用便利性,從實驗結果可以得知多孔矽由於劇烈的表面起伏和電負度為負的分子鍵尾,而產生疏水性的物理特性(表面能低),和因沉積銀表面物理特性電負度為負轉正成為親水性(表面能高),可透過”液珠沉積法”達成圖案化親疏水性的銀沉積點,其兼具多孔矽利於檢測樣本聚集且有仍然保持強拉曼訊號增強,除此之外,整體試片製作成本低廉且不需貴重儀器才能製作,只需在一般無塵室即可製作,除了上述優勢之外,其試片於實際樣本檢測中,由於樣本液滴因被限制其檢測樣本也被侷限於銀沉積點中,並不會樣本被浪費而造成靈敏度下降的問題,又因表面能差異樣本液滴自動對位於銀沉積點,更加便利於實際檢測過程,簡化很多於實驗過程中的流程,隨著液滴因被限制形成液滴透鏡,提供另一種方式可快速檢測的方式,不需要等待樣本液滴完全乾掉就可以檢測。
Surface Enhanced Raman Scattering (SERS) is used as a non-destructive optical detection. It is often used to detect various biological samples including pyridine, drugs, pesticides, proteins, food additives, DNA or RNA. In this experiment, non-structural porous silicon (PS) was used as the solid SERS substrate, and silver nanoparticles deposited on the PS surface was used as a Raman signal enhancement source. From the experimental results, it can be seen that PS has a strong surface undulation and negative electronegativity of the molecular bonding tails. Therefore, the physical properties of hydrophobicity (low surface energy) are generated as described above. The physical properties of the deposited silver surface become hydrophilic (high surface energy) as the electronegativity turns negative to positive. The patterned hydrophobic silver deposition point can be achieved by the droplet deposition method. The PS facilitates the detection of sample aggregation and still maintains strong Raman signal enhancement. In addition to that the total specimen production cost is low and does not require expensive equipment to produce, and can be produced in a normal clean room. In addition to the above advantages, the actual sample are limited by the silver deposition point of the sample droplets so that the sample is not wasted and the sensitivity is reduced. Because of the surface energy difference, the sample droplets are self-align at the silver deposition point, which facilitates the actual detection process and simplifies many processes in the experiment. As the droplet is confined, a droplet lens is formed. Provide another way to quickly detect.
1. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 1974. 26(2): p. 163-166.
2. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20.
3. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
4. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 1978. 69(9): p. 4159-4161.
5. Moskovits, M., Surface-enhanced spectroscopy. Reviews of modern physics, 1985. 57(3): p. 783.
6. Aroca, R., Surface-enhanced vibrational spectroscopy. 2006: John Wiley & Sons.
7. Ding, S.-Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017. 46(13): p. 4042-4076.
8. Le Ru, E. and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. 2008: Elsevier.
9. Lombardi, J.R. and R.L. Birke, A unified view of surface-enhanced Raman scattering. Accounts of chemical research, 2009. 42(6): p. 734-742.
10. Otto, A., The ‘chemical’(electronic) contribution to surface‐enhanced Raman scattering. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2005. 36(6‐7): p. 497-509.
11. Otto, A., Charge transfer in first layer enhanced Raman scattering and surface resistance. Quarterly Phys Rev, 2017. 3.
12. Le Ru, E., et al., Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2008. 39(9): p. 1127-1134.
13. Le Ru, E.C. and P.G. Etchegoin, Quantifying SERS enhancements. MRS bulletin, 2013. 38(8): p. 631-640.
14. Zhu, W., et al., Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nature communications, 2016. 7(1): p. 1-14.
15. Alessandri, I. and J.R. Lombardi, Enhanced Raman scattering with dielectrics. Chemical reviews, 2016. 116(24): p. 14921-14981.
16. Otto, A., Surface-enhanced Raman scattering:“Classical” and “Chemical” origins. Light scattering in solids IV, 1984: p. 289-418.
17. Etchegoin, P.G. and E. Le Ru, A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 2008. 10(40): p. 6079-6089.
18. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 1997. 78(9): p. 1667.
19. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102-1106.
20. Zrimsek, A.B., N.L. Wong, and R.P. Van Duyne, Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof. The Journal of Physical Chemistry C, 2016. 120(9): p. 5133-5142.
21. Kleinman, S.L., et al., Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Journal of the American Chemical Society, 2013. 135(1): p. 301-308.
22. Le Ru, E., et al., Experimental verification of the SERS electromagnetic model beyond the| E| 4 approximation: polarization effects. The Journal of Physical Chemistry C, 2008. 112(22): p. 8117-8121.
23. Fan, M., G.F. Andrade, and A.G. Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Analytica chimica acta, 2011. 693(1-2): p. 7-25.
24. Mosier-Boss, P.A., Review of SERS substrates for chemical sensing. Nanomaterials, 2017. 7(6): p. 142.
25. Tantra, R., R.J. Brown, and M.J. Milton, Strategy to improve the reproducibility of colloidal SERS. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2007. 38(11): p. 1469-1479.
26. Freeman, R.G., et al., Self-assembled metal colloid monolayers: an approach to SERS substrates. Science, 1995. 267(5204): p. 1629-1632.
27. Grabar, K.C., et al., Preparation and characterization of Au colloid monolayers. Analytical chemistry, 1995. 67(4): p. 735-743.
28. Grabar, K.C., et al., Kinetic control of interparticle spacing in Au colloid-based surfaces: rational nanometer-scale architecture. Journal of the American Chemical Society, 1996. 118(5): p. 1148-1153.
29. Acres, R.G., et al., Molecular structure of 3-aminopropyltriethoxysilane layers formed on silanol-terminated silicon surfaces. The Journal of Physical Chemistry C, 2012. 116(10): p. 6289-6297.
30. Tian, F., et al., Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Analytical Methods, 2014. 6(22): p. 9116-9123.
31. Guerrini, L. and D. Graham, Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chemical Society Reviews, 2012. 41(21): p. 7085-7107.
32. Bonifacio, A., S. Cervo, and V. Sergo, Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Analytical and bioanalytical chemistry, 2015. 407(27): p. 8265-8277.
33. Péron, O., et al., Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS). Talanta, 2009. 79(2): p. 199-204.
34. Han, Y., et al., Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses. Applied Physics A, 2009. 97(3): p. 721-724.
35. Syed, H., et al., SERS studies of explosive molecules with diverse copper nanostructures fabricated using ultrafast laser ablation. Adv. Mater. Lett, 2015. 6: p. 1073-1080.
36. Abu Hatab, N.A., J.M. Oran, and M.J. Sepaniak, Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS nano, 2008. 2(2): p. 377-385.
37. Petti, L., et al., A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications. Vibrational Spectroscopy, 2016. 82: p. 22-30.
38. Yue, W., et al., Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering. Journal of Micromechanics and Microengineering, 2012. 22(12): p. 125007.
39. Lin, C.-H., et al., One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering. Optics express, 2009. 17(24): p. 21581-21589.
40. Yang, J., et al., Laser hybrid micro/nano-structuring of Si surfaces in air and its applications for SERS detection. Scientific reports, 2014. 4(1): p. 1-8.
41. Zhu, Z., et al., Large-area surface-enhanced Raman scattering-active substrates fabricated by femtosecond laser ablation. Science China Physics, Mechanics and Astronomy, 2013. 56(9): p. 1806-1809.
42. Kanipe, K.N., et al., Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity. ACS nano, 2016. 10(8): p. 7566-7571.
43. Natan, M.J., Concluding remarks surface enhanced Raman scattering. Faraday Discussions, 2006. 132: p. 321-328.
44. Lin, X.-M., et al., Surface-enhanced Raman spectroscopy: substrate-related issues. Analytical and bioanalytical chemistry, 2009. 394(7): p. 1729-1745.
45. Brown, R.J. and M.J. Milton, Nanostructures and nanostructured substrates for surface—enhanced Raman scattering (SERS). Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2008. 39(10): p. 1313-1326.
46. Parker, A.R. and C.R. Lawrence, Water capture by a desert beetle. Nature, 2001. 414(6859): p. 33-34.
47. Zhai, L., et al., Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Letters, 2006. 6(6): p. 1213-1217.
48. Garrod, R., et al., Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic− superhydrophilic surfaces. Langmuir, 2007. 23(2): p. 689-693.
49. Chaudhury, M.K. and G.M. Whitesides, How to make water run uphill. Science, 1992. 256(5063): p. 1539-1541.
50. Moradi, N., F. Varnik, and I. Steinbach, Roughness-gradient–induced spontaneous motion of droplets on hydrophobic surfaces: A lattice Boltzmann study. EPL (Europhysics Letters), 2010. 89(2): p. 26006.
51. Zhang, J. and Y. Han, Shape-gradient composite surfaces: water droplets move uphill. Langmuir, 2007. 23(11): p. 6136-6141.
52. Feng, X. and L. Jiang, Design and creation of superwetting/antiwetting surfaces. Advanced Materials, 2006. 18(23): p. 3063-3078.
53. Hong, X., X. Gao, and L. Jiang, Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. Journal of the American Chemical Society, 2007. 129(6): p. 1478-1479.
54. Manna, U. and D.M. Lynn, Patterning and impregnation of superhydrophobic surfaces using aqueous solutions. ACS applied materials & interfaces, 2013. 5(16): p. 7731-7736.
55. Wu, M., X. Man, and M. Doi, Multi-ring deposition pattern of drying droplets. Langmuir, 2018. 34(32): p. 9572-9578.
56. Jeong, K.-H., et al., Tunable microdoublet lens array. Optics Express, 2004. 12(11): p. 2494-2500.
57. Moran, P.M., et al., Fluidic lenses with variable focal length. Applied physics letters, 2006. 88(4): p. 041120.
58. Pohl, H.A., Dielectrophoresis. The behavior of neutral matter in nonuniform electric fields, 1978.
59. Schwartz, J.A., J.V. Vykoukal, and P.R. Gascoyne, Droplet-based chemistry on a programmable micro-chip. Lab on a Chip, 2004. 4(1): p. 11-17.
60. Velev, O.D., B.G. Prevo, and K.H. Bhatt, On-chip manipulation of free droplets. Nature, 2003. 426(6966): p. 515-516.
61. Cho, S.K., H. Moon, and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical systems, 2003. 12(1): p. 70-80.
62. Yi, U.-C. and C.-J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes. Journal of Micromechanics and Microengineering, 2006. 16(10): p. 2053.
63. Lin, Y.-H., Y.-L. Liu, and G.-D.J. Su, Optical zoom module based on two deformable mirrors for mobile device applications. Applied Optics, 2012. 51(11): p. 1804-1810.
64. Du, X., et al., Qualitative and quantitative determination of melamine by surface-enhanced Raman spectroscopy using silver nanorod array substrates. Applied spectroscopy, 2010. 64(7): p. 781-785.
65. Hussain, A., D.-W. Sun, and H. Pu, SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect. Food Additives & Contaminants: Part A, 2019. 36(6): p. 851-862.
66. Saini, G., et al., Rhodamine 6G interaction with solvents studied by vibrational spectroscopy and density functional theory. Journal of Molecular Structure, 2009. 931(1-3): p. 10-19.
67. Yi, M., et al., Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced Raman scattering. Plasmonics, 2011. 6(3): p. 515-519.
68. Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.
69. Anyfantakis, M., et al., Modulation of the coffee-ring effect in particle/surfactant mixtures: the importance of particle–interface interactions. Langmuir, 2015. 31(14): p. 4113-4120.
70. Ji, B., et al., Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering. Nanoscale, 2019. 11(43): p. 20534-20545.
71. Liu, J., J. Wang, and L. Jiang, Influence of Substrate Wettability on Colloidal Assembly, in Theoretical Foundations and Application of Photonic Crystals. 2017, IntechOpen.
72. Parsa, M., Wetting and evaporation of nanosuspension droplets. 2017, Université de Valenciennes et du Hainaut-Cambresis.
73. Deegan, R.D., et al., Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997. 389(6653): p. 827-829.
74. Hu, H. and R.G. Larson, Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 2005. 21(9): p. 3972-3980.
75. Sempels, W., et al., Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system. Nature communications, 2013. 4(1): p. 1-8.
76. Still, T., P.J. Yunker, and A.G. Yodh, Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 2012. 28(11): p. 4984-4988.
77. Ward, C. and F. Duan, Turbulent transition of thermocapillary flow induced by water evaporation. Physical Review E, 2004. 69(5): p. 056308.
78. Hauffe, K., In hydrofluoric acid corrosion-resistant materials. Zeitschrift fuer Werkstofftechnik, 1985. 16(8): p. 259-270.
79. Amin, M.U., et al., Electrochemical growth of dendritic silver nanostructures as facile SERS substrates. CrystEngComm, 2021. 23(3): p. 694-699.
80. Cetinel, A., N. Artunç, and E. Tarhan, The growth of silver nanostructures on porous silicon for enhanced photoluminescence: The role of AgNO3 concentration and deposition time. The European Physical Journal Applied Physics, 2019. 86(1): p. 11301.
81. Cheng, Z.-Q., et al., Morphology-controlled fabrication of large-scale dendritic silver nanostructures for catalysis and SERS applications. Nanoscale research letters, 2019. 14(1): p. 1-7.
82. Drozdowicz-Tomsia, K., F. Xie, and E.M. Goldys, Deposition of silver dentritic nanostructures on silicon for enhanced fluorescence. The Journal of Physical Chemistry C, 2010. 114(3): p. 1562-1569.
83. Liu, T., et al., Silver morphology indicating the evolution of concentration heterogeneity. Chemical Engineering and Processing-Process Intensification, 2018. 134: p. 38-44.
84. Mandke, M.V., S.-H. Han, and H.M. Pathan, Growth of silver dendritic nanostructures via electrochemical route. CrystEngComm, 2012. 14(1): p. 86-89.
85. Wang, W., et al., Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis. Nanoscale, 2014. 6(16): p. 9588-9593.
86. Le Ru, E.C., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
87. Wu, J., et al., Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate. Applied Surface Science, 2019. 494: p. 583-590.
88. Zillohu, A.U., et al., Biomimetic transferable surface for a real time control over wettability and photoerasable writing with water drop lens. Scientific reports, 2014. 4(1): p. 1-7.
89. Alexander, D.R., et al., Nonlinear interaction of KrF laser radiation with small water droplets. Applied optics, 1991. 30(12): p. 1455-1460.