| 研究生: |
邱品傑 Pin-Chieh Chiu |
|---|---|
| 論文名稱: |
負電容場效電晶體之微縮與變異度分析 Analysis of Scalability and Variability for Negative Capacitance FETs |
| 指導教授: |
胡璧合
Vita Pi-Ho Hu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 鐵電材料 、負電容場效電晶體 、完全空乏型場效電晶體 、鰭狀場效電晶體 、微縮性 、變異度 、線邊緣粗糙度 、金屬功函數變異度 |
| 外文關鍵詞: | Ferroelectric material, negative capacitance FET (NCFET), fully depleted Silicon-On-Insulator (FDSOI), FinFET, scalibility, variability, line-edge roughness (LER), work function variation (WFV) |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高性能元件和超低功耗系統對於人工智能(AI)和物聯網(IoT)應用等新興需求非常重要,而降低電源電壓(Supply voltage)是實現較低靜態和動態功耗的有效方法之一。然而,降低電源電壓會降低半導體元件的導通電流(Ion),因此陡坡元件(Steep slope device)對於超低功率系統應用是必需的,具有更好的Ion/Ioff比率的負電容場效電晶體(Negative Capacitance Field Effect Transistor, NCFET),為有機會實現高效率開關和超低功率系統的前瞻元件之一。
本文利用TCAD 軟體的Poisson-Schrodinger solver,並且結合穩態的Landau-Khalatnikov方程式,建立了負電容場效電晶體的數值模擬流程架構,並且分析了負電容場效電晶體的微縮性(Scalability)、對元件尺寸變化的靈敏度(Sensitivity)和變異度(Variability)。在微縮性的研究中,我們研究了負電容鰭狀場效電晶體(NC-FinFET)和負電容完全空乏型場效電晶體(NC-FDSOI)微縮至2奈米技術節點。我們提出TCAD元件模擬驗證,對於負電容鰭狀場效電晶體使用固定鰭狀厚度(Wfin),及負電容完全空乏型場效電晶體使用固定通道厚度(Tch),負電容效應可以使兩種傳統的場效電晶體的閘極通道長度微縮至兩奈米技術節點。而負電容鰭狀場效電晶體和負電容完全空乏型場效電晶體在兩奈米技術節點下,表現出關閉電流(Ioff)小於100 nA/µm,而且對比相同節點下的鰭狀場效電晶體和完全空乏型場效電晶體,負電容效應提升其導通電流約10%~29%。
其次,我們分析了元件結構參數和鐵電參數,包括殘餘極化(remnant polarization, P0)、矯頑場(coercive field, EC)和鐵電層厚度(ferroelectric layer thickness, TFE)等參數,對次臨界擺幅(subthreshold swing, SS)和電壓增益(Voltage gain, Av)的影響。
最後,針對變異度的研究,我們分析了考慮線邊緣粗糙度(line edge rouoghness, LER)和功函數變異度(Work function variation, WFV),對負電容完全空乏型場效電晶體(NC-FDSOI)和完全空乏型場效電晶體(FDSOI)的臨界電壓(Vt)和切換時間(Switching time, ST)變異度之影響。在考慮線邊粗糙度的影響下,相較於一般完全空乏型場效電晶體(σVt = 16.2 mV),負電容完全空乏型場效電晶體具有有較小的臨界電壓之變異度(σVt = 3.8 mV);而考慮金屬功函數變異度的影響下,負電容完全空乏型場效電晶體有和一般完全空乏型場效電晶體差不多的臨界電壓變異度。換句話說,負電容效應可以抑制線邊粗糙度導致的臨界電壓變異度,但是無法抑制金屬功函數變異所導致的臨界電壓變異度。然而,一般完全空乏型場效電晶體,其線邊粗糙度和金屬功函數變異度所導致的臨界電壓變異度是差不多的,但無論是完全空乏型場效電晶體或是負電容完全空乏型場效電晶體,考慮線邊粗糙度下的切換時間變異度,都會大於金屬功函數變異度所導致的切換時間變異度。這是因為考慮金屬功函數變異度下,過度電荷(Transition charge, ∆Q)和等效驅動電流(Effective drive current, Ieff)是呈現正相關性;而考慮線邊粗糙度下,過度電荷和等效驅動電流是呈現負相關性。
High-performance devices and ultra-low power systems are important for emerging demands of artificial intelligence (AI) and Internet-of-Thing (IoT) applications. Reducing supply voltage is an efficient method to achieve lower static and dynamic power. However, reducing supply voltage degrades the on-state current for the semiconductor devices. Therefore, the steep slope device is necessary for the low power system application. Negative capacitance FET (NCFET) with better Ion/Ioff ratio is a promising candidate to achieve energy-efficient switching and ultra-low power system.
In this dissertation, we establish the numerical simulation framework for NCFET by using TCAD coupled with 1D steady state Landau-Khalatnikov equation and then analyze the scalability, sensitivity, and variability of negative capacitance FETs. First, for the scalability study, we analyze the negative capacitance FinFET and FDSOI (NC-FinFET and NC-FDSOI) for technology nodes down to 2nm. We present TCAD simulation evaluation, with fixed Wfin for FinFET and Tch for FDSOI, negative capacitance concept enables FinFET and FDSOI scaling to 2 nm node. NC-FinFET and NC-FDSOI at 2 nm node show Ioff < 100 nA/μm and 10% ~ 29% higher Ion compared with 2nm FinFET (97 μA/μm Ioff) and FDSOI (46 μA/μm Ioff). NC-FDSOI exhibits similarly strong back-gate bias effects on Ioff and Ion compared with FDSOI.
Second, we analyze the sensitivity and the impact of the device structures, device parameters, and ferroelectric parameters including remnant polarization (P0), coercive field (EC) and thickness of the ferroelectric layer (TFE) on the subthreshold swing (SS), voltage gain (AV). Finally, for the variability study, we analyze the threshold voltage (Vt) and switching time (ST) variations of NC-FDSOI and FDSOI considering line-edge roughness (LER) and work function variation (WFV). Compared to FDSOI, NC-FDSOI exhibits smaller LER induced Vt variations (σVt = 3.8 mV) and comparable WFV induced Vt variations (σVt = 16.2 mV). LER induced σVt can be suppressed by negative capacitance, while WFV induced σVt cannot be suppressed by negative capacitance. However, for both NC-FDSOI and FDSOI, LER induced ST variations are larger than the WFV induced ST variations. This is because transition charge (∆Q) and effective drive current (Ieff) are positively correlated for considering WFV and negatively correlated for considering LER.
[1] International Roadmap for Devices and Systems (IRDS), 2016. [https://irds.ieee.org/]
[2] S. Monfray et al., "Localized SOI technology: an innovative Low Cost self-aligned process for Ultra Thin Si-film on thin BOX integration for Low Power applications," 2007 IEEE International Electron Devices Meeting, 2007, pp. 693-696.
[3] T. Ohtou, N. Sugii and T. Hiramoto, "Impact of Parameter Variations and Random Dopant Fluctuations on Short-Channel Fully Depleted SOI MOSFETs With Extremely Thin BOX," in IEEE Electron Device Letters, vol. 28, no. 8, pp. 740-742, Aug. 2007.
[4] Y. Morita et al., "Smallest Vth variability achieved by intrinsic silicon on thin BOX (SOTB) CMOS with single metal gate," 2008 Symposium on VLSI Technology, 2008, pp. 166-167.
[5] Q. Liu et al., "Impact of back bias on ultra-thin body and BOX (UTBB) devices," 2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011, pp. 160-161.
[6] C. C. Wu et al., "High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme," 2010 International Electron Devices Meeting, 2010, pp. 27.1.1-27.1.4.
[7] T. Yamashita et al., "Sub-25nm FinFET with advanced fin formation and short channel effect engineering," 2011 Symposium on VLSI Technology - Digest of Technical Papers, 2011, pp. 14-15.
[8] J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt," Physical Review, vol. 17, pp. 475, 1921.
[9] J. Müller et al., "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG," 2012 Symposium on VLSI Technology - Digest of Technical Papers, 2012, pp. 25-26.
[10] H. Mulaosmanovic et al., "Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells," 2015 IEEE International Electron Devices Meeting, 2015, pp. 26.8.1-26.8.3.
[11] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 19.7.1-19.7.4.
[12] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano Lett., vol. 8, no. 2, pp. 405–410, 2008.
[13] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin and C. Hu, "Low power negative capacitance FETs for future quantum-well body technology," 2013 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2013, pp. 1-2.
[14] H. Ota, T. Ikegami, J. Hattori, K. Fukuda, S. Migita and A. Toriumi, "Fully coupled 3-D device simulation of negative capacitance FinFETs for sub 10 nm integration," 2016 IEEE International Electron Devices Meeting, 2016, pp. 12.4.1-12.4.4.
[15] M. H. Lee et al., "Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs," 2016 IEEE International Electron Devices Meeting, 2016, pp. 12.1.1-12.1.4.
[16] Z. Krivokapic et al., "14nm Ferroelectric FinFET technology with steep subthreshold slope for ultra low power applications," 2017 IEEE International Electron Devices Meeting, 2017, pp. 15.1.1-15.1.4.
[17] P. Sharma, J. Zhang, K. Ni and S. Datta, "Time-Resolved Measurement of Negative Capacitance," in IEEE Electron Device Letters, vol. 39, no. 2, pp. 272-275, Feb. 2018.
[18] University of Cambridge,Teaching and learning packages, [https://www.doitpoms.ac.uk/tlplib/ferroelectrics/index.php]
[19] Z. C. Yuan et al., "Switching-Speed Limitations of Ferroelectric Negative-Capacitance FETs," in IEEE Transactions on Electron Devices, vol. 63, no. 10, pp. 4046-4052, Oct. 2016.
[20] K. S. Li et al., "Sub-60mV-swing negative-capacitance FinFET without hysteresis," 2015 IEEE International Electron Devices Meeting, 2015, pp. 22.6.1-22.6.4.
[21] M. H. Lee et al., "Prospects for ferroelectric HfZrOx FETs with experimentally CET=0.98nm, SSfor=42mV/dec, SSrev=28mV/dec, switch-off <0.2V, and hysteresis-free strategies," 2015 IEEE International Electron Devices Meeting, 2015, pp. 22.5.1-22.5.4.
[22] ITRS 2.0, 2015. [http://www.itrs2.net/]
[23] V. P. H. Hu, P. C. Chiu, A. B. Sachid and C. Hu, "Negative capacitance enables FinFET and FDSOI scaling to 2 nm node," 2017 IEEE International Electron Devices Meeting (IEDM), 2017, pp. 23.1.1-23.1.4.
[24] Johannes Müller et al., "Ferroelectricity in Simple Binary ZrO2 and HfO2," Nano Letters, 12 (8), pp 4318-4323, 2012.
[25] J. P. Duarte et al., "Compact models of negative-capacitance FinFETs: Lumped and distributed charge models," 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp. 30.5.1-30.5.4.
[26] J. Seo, J. Lee and M. Shin, "Analysis of Drain-Induced Barrier Rising in Short-Channel Negative-Capacitance FETs and Its Applications," in IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1793-1798, April 2017.
[27] S. Natarajan et al., "A 14nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size," 2014 IEEE International Electron Devices Meeting, 2014, pp. 3.7.1-3.7.3.
[28] P. C. Chiu and V. P. H. Hu, "Analysis of subthreshold swing and internal voltage amplification for hysteresis-free negative capacitance FinFETs," 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), 2017, pp. 134-135.
[29] S. Khandelwal, A. I. Khan, J. P. Duarte, A. B. Sachid, S. Salahuddin and C. Hu, "Circuit performance analysis of negative capacitance FinFETs," 2016 IEEE Symposium on VLSI Technology, 2016, pp. 1-2.
[30] V. P. H. Hu, M. L. Fan, P. Su and C. T. Chuang, "Analysis of Ultra-Thin-Body SOI Subthreshold SRAM Considering Line-Edge Roughness, Work Function Variation, and Temperature Sensitivity," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 3, pp. 335-342, Sept. 2011.
[31] H. P. Lee and P. Su, "Suppressed Fin-LER Induced Variability in Negative Capacitance FinFETs," in IEEE Electron Device Letters, vol. 38, no. 10, pp. 1492-1495, Oct. 2017.
[32] P. C. Chiu and V. P. H. Hu, "Analysis of Negative Capacitance UTB SOI MOSFETs considering Line-Edge Roughness and Work Function Variation," 2018 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), 2018, pp. 13-15.
[33] G. Karbasian et al., "Ferroelectricity in HfO2 thin films as a function of Zr doping," 2017 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), 2017, pp. 1-2.
[34] A. Asenov, S. Kaya and A. R. Brown, "Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness," in IEEE Transactions on Electron Devices, vol. 50, no. 5, pp. 1254-1260, May 2003.
[35] N. Agrawal, Y. Kimura, R. Arghavani and S. Datta, "Impact of Transistor Architecture (Bulk Planar, Trigate on Bulk, Ultrathin-Body Planar SOI) and Material (Silicon or III–V Semiconductor) on Variation for Logic and SRAM Applications," in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3298-3304, Oct. 2013.
[36] H. F. Dadgour, K. Endo, V. K. De and K. Banerjee, "Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors—Part II: Implications for Process, Device, and Circuit Design," in IEEE Transactions on Electron Devices, vol. 57, no. 10, pp. 2515-2525, Oct. 2010.
[37] K. Ohmori et al., "Impact of additional factors in threshold voltage variability of metal/high-k gate stacks and its reduction by controlling crystalline structure and grain size in the metal gates," 2008 IEEE International Electron Devices Meeting, 2008, pp. 1-4.
[38] C. Auth, "45nm high-k + metal gate strain-enhanced CMOS transistors," 2008 IEEE Custom Integrated Circuits Conference, San Jose, CA, 2008, pp. 379-386.
[39] S. E. Laux, "A Simulation Study of the Switching Times of 22- and 17-nm Gate-Length SOI nFETs on High Mobility Substrates and Si," in IEEE Transactions on Electron Devices, vol. 54, no. 9, pp. 2304-2320, Sept. 2007.
[40] Y. S. Wu, M. L. Fan and P. Su, "Investigation of Switching-Time Variations for Nanoscale MOSFETs Using the Effective-Drive-Current Approach," in IEEE Electron Device Letters, vol. 31, no. 2, pp. 162-164, Feb. 2010.
[41] V. P.-H. Hu and P.-C. Chiu, "Analysis of switching characteristics for negative capacitance ultra-thin-body germanium-on-insulator MOSFETs," in Japanese Journal of Applied Physics, vol. 57, pp. 1-5, 2018.