| 研究生: |
簡智翔 Chih-Hsiang Jien |
|---|---|
| 論文名稱: |
共溶劑對β-胡蘿蔔素於超臨界二氧化碳溶解度影響之研究 Solubility of β-carotene in supercritical CO2 with cosolvent |
| 指導教授: |
李亮三
Liang-sun Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 共溶劑 、二氧化碳 、超臨界流體 、胡蘿蔔素 |
| 外文關鍵詞: | β-carotene, cosolvent, CO2, supercritical |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超臨界流體分離技術乃利用溶質在超臨界流體中較大的溶解度的變化來進行,而影響固體溶解度的因素除了溫度、壓力外,共溶劑的添加亦有可能,因此,欲發展此一分離製程,則固體在超臨界流體中的溶解度實驗數據及一個可以準確預測相行為及計算溶質溶解度的熱力學模式是主要的關鍵所在。
本研究以一套半流動式的高壓相平衡實驗裝置在溫度313.15 K ~ 333.15 K以及壓力 15 MPa ~ 28 MPa(150 bar ~ 280 bar)的條件下量測單一β-胡蘿蔔素以及在丙酮、乙醇、正己烷等共溶劑參與下β-胡蘿蔔素在超臨界二氧化碳中的平衡溶解度數據。對於熱力學模式的關聯,選用 Peng-Robinsion 狀態方程式 (PR EOS) 並配合VDW2 混合律,此外,本研究將嘗試幾種以流體密度或無限稀釋溶液理論為基礎的半經驗及其修正模式如Chrastil、Mendez-Santiago和Jiang等,來探討共溶劑濃度對β-胡蘿蔔素溶解度的影響,希望能提供進一步分離程序設計時所需之最適熱力學計算模式。
The solubility of a solid in a supercritical fluid is effected by temperature, pressure. And in some cases, an added cosolvent is utilized in the supercritical fluid extraction process. Therefore, the equilibrium data in supercritical fluids and the appropriate thermodynamic models that can accurately predict the phase behavior of the system are the important information for the design of such process and the selection of optimal operating conditions
In this study, the solubilities of
Adachi, Y.; Lu, B. C. Y., “Supercritical fluid extraction with carbon dioxide and ethylene,” Fluid Phase Equilibria, 1983, 14, 147-156.
Chrastil, J., “Solubility of solids and liquids in supercritical gases,” J. Phys. Chem., 1982, 86, 3016-3021.
Cocero, M. J.; Gonzalez, S.; Perez, S.; Alonso, E., “Supercritical extraction of unsaturated products. Degradation of β-carotene in supercritical extration processes,” J. Supercritical Fluids, 2000, 19, 39-44.
Cortesi, A.; Kikic, I.; Alessi, P.; Turtoi, G.; Garnier, S., “Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide: experimental data and correlation,” J. Supercritical Fluids, 1999, 14, 139-144.
Cygnarowicz, M. L.; Seider, W. D., “Design and contral of a process to extract β-carotene with supercritical carbon dioxide,” Biotechnol. Prog., 1990, 6, 82-91.
Debenedetti, P. G.; Kumar, S. K., “Infinite dilution fugacity coefficients and the general behavior of dilute binary systems,” AIChE J., 1986, 32, 1253-1262.
Gonzảlez, J. C.; Vieytes, M. R.; Botana, A. M.; Vieites, J. M.; Botana L. M., “Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide,” Jourmal of Chromatography A, 2001, 910, 119-125.
Hansen, B. N.; Harvey, A. H.; Coelho, J. A. P.; Palavra, A. M. F.; Bruno, T. J., “Solubility of Capsaicin and β-carotene in Supercritical carbon dioxide and in halocarbons,” J. Chem. Eng. Data, 2001, 46, 1054-1058.
Harvey, A. H.,“Supercritical solubility of solids from near-critical dilute-mixture theory,” J. Phys. Chem., 1990, 94, 8403-8406.
Huang, F. H.; Li, M. H.; Lee, L. L.; Starling, K. E.; Chung, F. T. H., “An accurate equation of state for carbon dioxide,” J. Chem. Eng. Japan, 1985, 18(6), 490-496.
Jennlngs, D. W.; Lee, R. J.; Teja, A. S., ”Vapor-Liquid Equilibria in yhe Carbon Dioxide + Ethanol and Carbon Dioxide + 1-Butanol Systems,” J. Chem. Eng. Data, 1991, 36, 303-307.
Jiang, C.; Pan, Q.; Pan, Z., “Solubility behavior of solids and liquids in compressed gases,” J. Supercritical Fluids, 1998, 12, 1-9.
Johannsen, M.; Brunner G., “Solubilities of fat-soluble vitamins A, D, E, and K in supercritical carbon dioxide,” J. Chem. Eng. Data, 1997, 42, 106-111.
Katz, E.; Eksteen, R.; Schoenmakers, P.; Miller, N., “Handbook of HPLC ” Marcel Dekker Inc., New York, 1998.
Katayama, T., Ohgaki, K., Maekawa, G.,Goto, M., and Nagano, T., “Isothermal Vapor-Liquid Equilibria of Acetone-Carbon Dioxide and Methanol-Carbon Dioxide Systems at High Pressures,” J. Chem. Eng. Japan, 1975, 8, 89-92.
Lee, L. S.; Fu, J. H.; Hsu, H. L.,”Solubility of Solid 1,4-Dimethoxybenzene in Supercritical Carbon Dioxide,” J. Chem. Eng. Data, 2000, 45, 358-361.
Lee, L. S.; Huang, J. F.; Zhu, O. X.,”Solubilities of Solid Benzoic Acid, Phenanthrene, and 2,3-Dimethylhexane in Supercritical Carbon Dioxide,” J. Chem. Eng. Data, 2001, 46, 1156-1159.
Li, Q.; Zhang, Z.; Zhong, C.; Liu, Y.; Zhou, Q., “Solubility oh solid solutes in supercritical carbon dioxide with and without cosolvents,” Fluid Phase Equilibria, 2003, 207, 183-192.
Mackay, D.; Bobra, A.; Chan, D. W.; Shiu, W. Y.,“Vapor pressure correlations for low-volatility environmental chemicals,” Environ. Sci. Technol., 1982, 16, 645-649.
Mendes, R. L.; Nobre, B. P.; Coelho, J. P.; Palavra, A. F., “Solubility of β-carotene in supercritical carbon dioxide and ethane,” J. Supercritical Fluids, 1999, 16, 99-106.
Mendez-Saniago, J.; Teja, A. S., “The solubility of solids in supercritical fluids,” Fluid Phase Equilibria, 1999, 158-160, 501-510.
Mendez-Saniago, J.; Teja, A. S., “The solubility of solids in supercritical fluids: Consistency of Data and a New Model for Cosolvent System,” Ind. Eng. Chem. Res, 2000, 39, 4767- 4771.
Ohgaki, K., and Katayama, T., “Isothermal Vapor-Liquid Equilibrium Data for Binary Systems Containing Carbon Dioxide at High Pressures: Methanol-Carbon Dioxide, n-Hexane-Carbon Dioxide, and Benzene-Carbon Dioxide Systems,” J. Chem. Eng. Data, 1976, 21, 53-55.
Poling, B. E.; Prausnitz, J. M.; O''Connell, J. P., “The properties of gases and liquids” 5th edn., McGraw Hill, New York, 2001, 11-28.
Quackenbush, F. W., “Reverse phase HPLC separation of cis- and trans-carotenoids and its application to β-carotenes in food materials,” J. Liquid Chromatography, 1987, 10(4), 643-653.
Ruckenstein, E.; Shulgin, I., “Entrainer effect in supercritical mixtures,” Fluid Phase Equilibria, 2001, 180, 345-359.
Sakaki, K., “Solubility of