跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹永新
Yongsin Tsao
論文名稱: 疏散星團中恒星系統的重力彈射過程對海王星外物體軌道分佈的影響
The gravitational scattering effect of stars in open cluster on the orbital distribution of the 
Trans-Neptunian Objects
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
畢業學年度: 99
語文別: 中文
論文頁數: 42
中文關鍵詞: 恒星間交互作用逆行古柏帶天體海王星外物體
外文關鍵詞: retrograde KBO, Trans-Neptunian Objects, star encounter
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來發現了數個逆行的古柏帶天體,讓我們對這些天體的形成機制很感興趣,根據前人的研究指出,影響古柏帶天體的軌道演化有以下幾種因素:軌道共振的掃除、巨行星的彈射、與海王星交叉軌道的行星擾動、外來恒星的經過。其中,太陽若處在星團的環境中,由於附近有較多的恒星,外來恒星經過造成的擾動可能足以使古柏帶天體以高傾角的軌道存在。因此,我們在太陽附近放了約一千個沒有質量的小天體進行進行模擬,它們分佈在10~150 AU 以圓形軌道繞著太陽,外來的恒星以相對速度2~5km/s 接近太陽,在外來恒星遠離我們模擬的系統之後,去計算這些天體的離心率與軌道傾角的變化。我們發現經過的恒星,若最接近太陽的距離在一、兩百個天文單位左
    右,的確可以把大約1:5%的天體激發到高傾角的軌道。


    The origin of the high inclination and large eccentricity population of the Trans-Neptunian Objects (TNOs) has been interpreted in terms of the gravitational scattering e ect of a
    large planet, several large planetoids, or passing stars (Gomes, 2009). For the passing star scenario which would be most aptly applied to the case if the sun formed in a star cluster, We have developed models to simulate situations of gravitational interaction of proto-planetary systems surrounding low-mass stars in a dense stellar environment. We found passing stars with perihelion distaces on the order of a few hundred AU could excite
    TNOs to high inclination orbits.

    中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 誌謝. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . iii 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . vii 一、緒論. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 1 1.1 星團與早期太陽系的關係. . . . . . . . . . . . . . . . . . . . . . 1 1.2 環星盤. . . . . . . . . . . . . .. . . . . . . . . . . . . . . 3 1.3 古柏帶的結構. . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 傳統型古柏帶天體. . . . . . . . .. . . . . . . . . . . . . . . 5 1.3.2 共振型古柏帶天體. . . . . . . . .. . . . . . . . . . . . . . . 5 1.3.3 散射型古柏帶天體. . . . . . . . .. . . . . . . . . . . . . . . 6 1.4 逆行的古柏帶天體. . . . . . . . . .. . . . . . . . . . . . . . . 8 1.4.1 軌道共振的掃除. . . . . . . . . .. . . . . . . . . . . . . . . 9 1.4.2 巨行星的彈射. . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 與海王星交叉軌道的行星擾動. . . . . . . . . . . . . . . . . . . 10 1.4.4 外來恒星的經過. . . . . . . . . . . . . . . . . . . . . . . . 10 二、動力學模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 初始條件. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 恒星質量. . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 撞擊參數、相對速度. . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 古柏帶天體. . . . . . . . . . . .. . . . . . . . . . . . . . 12 2.2 太陽-恒星系統. . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 太陽、恒星、古柏帶天體的受力. . . . . . . . . . . . . . . . . . 14 三、結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 太陽、恆星、古柏帶天體的軌跡. . . . . . . . . . . . . . . . . . . 16 3.2 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 最接近距離的變化. . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 不同入射傾角對古柏帶的影響. . . . . . . . . . . . . . . . . . . 21 3.2.3 不同相對速度的擾動. . . . . . . . . . . . . . . . . . . . . . 21 3.2.4 不同恒星質量的影響. . . . . . . . . . . . . . . . . . . . . . 38 3.2.5 高傾角小天體產生率. . . . . . . . . . . . . . . . . . . . . . 38 四、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    Bonnell, I. A., Smith, K. W., Davies, M. B., & Horne, K. (2001). Planetary dynamics in stellar clusters. Monthly Notices of the Royal Astronomical Society, 322 , 859-865.
    Brasser, R., Duncan, M. J., & Levison, H. F. (2006). Embedded star clusters and the formation of the Oort Cloud. Icarus, 184 , 59-82.
    Brunini, A., & Melita, M. D. (2002). The existence of a planet beyond 50 au and the orbital distribution of the classical edgeworth-kuiper-belt objects. Icarus, 160 (1), 32 - 43.
    Carpenter, J. M., Meyer, M. R., Dougados, C., Strom, S. E., & Hillenbrand, L. A. (1997).
    Properties of the Monoceros R2 Stellar Cluster. The Astronomical Journal, 114 , 198-221.
    Duncan, M. J., & Levison, H. F. (1997). A scattered comet disk and the origin of Jupiter family comets. Science, 276 , 1670-1672.
    Fernandez, J. A., & Ip, W. (1984). Some dynamical aspects of the accretion of Uranus and Neptune - The exchange of orbital angular momentum with planetesimals. Icarus, 58 , 109-120.
    Gomes. (2003). The origin of the Kuiper Belt high-inclination population. Icarus, 161 , 404-418.
    Gomes. (2009). On the origin of the Kuiper belt. Celestial Mechanics and Dynamical Astronomy, 104 , 39-51.
    Ida, S., Larwood, J., & Burkert, A. (2000). Evidence for Early Stellar Encounters in the Orbital Distribution of Edgeworth-Kuiper Belt Objects. The Astrophysical Journal, 528 , 351-356.
    Kobayashi, H., Ida, S., & Tanaka, H. (2005). The evidence of an early stellar encounter in Edgeworth Kuiper belt. Icarus, 177 , 246-255.
    Lada, C. J., Alves, J., & Lada, E. A. (1996). Near-Infrared Imaging of Embedded Clusters: NGC 1333. The Astronomical Journal, 111 , 1964-+.
    Lada, C. J., & Lada, E. A. (2003). Embedded Clusters in Molecular Clouds. Annual Review of Astronomy and Astrophysics, 41 , 57-115.
    Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K. (2008). Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 196 , 258-273.
    Luhman, K. L., Rieke, G. H., Young, E. T., Cotera, A. S., Chen, H., Rieke, M. J., et al. (2000). The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Young Clusters. The Astrophysical Journal, 540 , 1016-1040.
    Luu, & Jewitt, D. C. (2002). Kuiper Belt Objects: Relics from the Accretion Disk of the Sun. Annual Review of Astronomy and Astrophysics, 40 , 63-101.
    Luu, Marsden, B. G., Jewitt, D., Trujillo, C. A., Hergenrother, C. W., Chen, J., et al. (1997). A new dynamical class of object in the outer Solar System. Nature, 387 , 573-575.
    Lykawka, P. S., & Mukai, T. (2008). An Outer Planet Beyond Pluto and the Origin of the Trans-Neptunian Belt Architecture. The Astronomical Journal, 135 , 1161-1200.
    Malhotra, R. (1993). The origin of Pluto''s peculiar orbit. Nature, 365 , 819-821.
    Malhotra, R. (1995). The Origin of Pluto''s Orbit: Implications for the Solar System Beyond Neptune. The Astronomical Journal, 110 , 420-+.
    McSween, H. Y., Jr., Lauretta, D. S., & Leshin, L. A. (2006). Recent Advances in Meteorites and Cosmochemistry. In Lauretta, D. S. & McSween, H. Y., Jr. (Ed.), Meteorites and the early solar system ii (p. 53-66).
    Nurnberger, D. E. A., & Petr-Gotzens, M. G. (2002). Infrared observations of NGC 3603. I. New constraints on cluster radius and Ks-bandluminosityfunction:Astronomy and Astrophysics; 382; 537~553:
    Petit, J., Morbidelli, A., & Valsecchi, G. B. (1999). Large Scattered Planetesimals and the Excitation of the Small Body Belts. Icarus, 141 , 367-387.
    Scally, A., & Clarke, C. (2001). Destruction of protoplanetary discs in the Orion Nebula Cluster. Monthly Notices of the Royal Astronomical Society, 325 , 449-456.
    Williams, J. P., & McKee, C. F. (1997). The Galactic Distribution of OB Associationsin Molecular Clouds. The Astronomical Journal, 476 , 166-+.
    Yu, Q., & Tremaine, S. (1999). The Dynamics of Plutinos. The Astronomical Journal,118 , 1873-1881.

    QR CODE
    :::