| 研究生: |
劉佳怡 Chia-Yi Liu |
|---|---|
| 論文名稱: |
節理岩體滲透係數先天異向性及 應力引致異向性對岩坡穩定性之影響 |
| 指導教授: |
董家鈞
Jia-Jyun Dong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 岩石邊坡穩定分析 、擬連續體模式 、FLAC 3D 、滲透係數異向性 |
| 外文關鍵詞: | Rock slope stability, Continuum approach, FLAC3D, Anisotropic permeability |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對屬於裂隙介質之節理岩體所形成的岩石邊坡,其節理所形成之複雜網
路往往是地下水流的重要通道,因此其特性對岩石邊坡地下水滲流系統之影響需被進一步探討。根據前人研究發現節理位態分佈會使岩體滲透係數產生先天異向性,同時應力亦會影響不同位態節理之內寬變化,因而導致滲透係數產生應力引致異向性。於是本研究使用 FLAC3D 軟體建立岩石邊坡模型,透過擬連續體模式計算受到節理先天及應力引致異向性影響之節理岩體滲透係數張量,將計算結果代回岩石邊坡模型後,經滲流分析得到穩態孔隙水壓於岩石邊坡模型之分佈情形,最後利用剪力強度折減法進行邊坡穩定分析探討受節理特性影響之滲流異向性對岩石邊坡穩定性之影響。結果顯示在分析條件為均向應力下,當平行坡面之節理數量明顯多於垂直坡面之節理數量時,相較節理均向分佈情況,節理先天異向性會影響地下水流方向使孔隙水壓值有相對差異28%,進而影響後續邊坡之安全係數;另外,在分析條件為節理均向分佈情況下,當最大主應力平行於坡面且明顯大於垂直於坡面之最小主應力時,會對平行於坡面之節理產生影響,因此與均向應力分佈情形相比孔隙水壓值有相對差異-6%,顯示應力引致滲流異向性會影響到邊坡孔隙水壓的分佈情形;綜合各分析條件結果,同時考慮節理先天異向性與應力引致之滲透係數異向性,與具有均質均向滲透係數之案例比較節點孔隙水壓值有相對差異-38%因此有較大安全係數。本研究探討不同分析條件下,節理特性對節理岩體滲透係數張量的影響,進而影響岩石邊坡之滲流系統,導致岩石邊坡穩定性受到影響,因此未來於岩石邊坡穩定性分析時,建議考慮節理特性對地下水滲流系統之影響。
In the case of rock slopes formed by jointed rock masses in fractured media, the complex network of joints often serves as a crucial pathway for subsurface water flow. As a result, understanding the characteristics of the joints and their impact on the groundwater seepage system in rock slopes requires further investigation. Previous studies have indicated that the orientations of joints induced inherent
anisotropic permeability in the rock mass. Additionally, stress affects the variation in aperture of joints with different orientations, resulting in stress-induced permeability anisotropy. Hence, this study utilizes the FLAC3D software to construct a rock slope model, via continuum approach to calculate the equivalent permeability tensor of the jointed rock mass, accounting for both inherent anisotropy and stress-induced anisotropy. The computed results are then incorporated into the model, enabling the determination of the distribution of steady-state pore water pressure in the rock slope through seepage analysis. Ultimately, slope stability analysis was conducted to examine the impact of permeability anisotropy induced by joint characteristics on the stability of rock slopes.
The results show that under isotropic stress conditions,when the number of bedding parallel joints was significantly more than the bedding perpendicular joints, inherent anisotropy of joints affected the direction of groundwater flow, resulting in a relative difference of -28% in pore water pressure distribution within the slope compared to the scenario of joint isotropy. This, in turn, affected the safety factor in subsequent slope stability analyses. Additionally, under the conditions of joint
isotropy, when the maximum principal stress was parallel to the slope surface and notably greater than the minimum principal stress perpendicular to the slope surface,
it influenced the joints parallel to the slope surface. Compared to the scenario of isotropic stress distribution, this led to a relative difference of -6% in pore water
pressure distribution. These findings demonstrate that stress-induced affects the distribution of pore water pressure in slopes.Overall, this study explores the impact of joint characteristics on the permeability coefficient tensor of jointed rock masses, subsequently influencing the
seepage system in rock slopes and the stability of rock slopes. Therefore, future analyses of rock slope stability should consider the influence of joint characteristics
on the groundwater seepage system.
1.Azizian, A., and Popescu, R. (2006). Three-dimensional seismic analysis of submarine slopes, Soil Dynamics and Earthquake Engineering, 26(9), 870-887.
2.Bandis, S.C., Lumsden, A.C., and Barton, N.R. (1983). Fundamentals of rock joint deformation, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249-268.
3.Barton, C. M. (1977). A geotechnical analysis of rock structure and fabric in C.S.A. Mine, Cobar, New South Wales, Applied Geomechanics Technical Paper, 24, Australia.
4.Bouwer, H., and Rice, R.C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, 12(3), 423-428.
5.Chugh, A. K. (2003). On the boundary conditions in slope stability analysis, International Journal for Numerical and Analytical Methods in Geomechanics, 27, 905-926.
6.Dawson, E.M., Roth, W.H., and Drescher, A. (1999). Slope stability analysis by strength reduction, Geotechnique, 49(6), 835-840.
7.Dong, J. J., Tzeng, J. H., Wu, P. K., and Lin, M. L. (2006). Effects of anisotropic permeability on stabilization and pore water pressure distribution of poorly cemented stratified rock slopes, International Journal for Numerical and Analytical Methods in Geomechanics, 30(15), 1501-1600.
8.Dong, J. J., Tu, C. H., Lee, W. R., and Jheng, Y. J. (2012). Effects of hydraulic conductivity/strength anisotropy on the stability, Computers and Geotechnics, 40, 147-159.
9.Goodman, R. E. (1989). Introduction to rock mechanics, 2nd ed. New York: John Wiley & Sons Ltd.
10.Griffiths, D.V., and Lane, P.A. (1999). Slope stability analysis by finite elements, Geotechnique, 49(3), 387-403.
11.Halford, K. J., and Kuniansky, E. L. (2002). Documentation of spreadsheets for the analysis of aquifer-test and slug-test data, USGS Publications Warehouse, Version 1.2.
12.Itasca Consulting Group, Inc. (2017). FLAC3D — Fast Lagrangian Analysis of Continua in Three-Dimensions, Version 6.0., Minneapolis: Itasca.
13.Kanatani, K. (1984). Distribution of directional data and fabric tensors. International Journal of Engineering Science, 22(2), 149-164.
14.Liu, J., Elsworth, D., and Brady, B. H. (1999). Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. International Journal of Rock Mechanics and Mining Sciences, 36(5), 581-589.
15.Markovich, K. H., Manning, A. H., Condon, L. E., and McIntosh, J. C. (2019). Mountain‐block recharge: A review of current understanding, Water Resources Research, 55, 8278-8304.
16.Mauldon, M. (1998). Estimating mean fracture trace length and density from observations in convex windows, Rock Mechanics and Rock Engineering, 31(4), 201-216.
17.Nian, T.K., Huang, R.Q., Wan, S.S., and Chen, G.Q. (2012). Three-dimensional strength-reduction finite element analysis of slopes: Geometric effects, Canadian Geotechnical Journal, 49(5), 574-588.
18.Oda, M. (1985). Permeability tensor for discontinuous rock masses, Geotechnique, 35(4), 483-495.
19.Oda, M. (1986). An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock mass, Water Resources Research, 22(13), 1845-1856.
20.Oda, M. (1993). Modern developments in rock structure characterization, Compressive Rock Engineering. 1st ed., 185-200, Elsevier, New York.
21.Olsson, R., and Barton, N. (2001). An improved model for hydromechanical coupling during shearing of rock joints, International Journal of Rock Mechanics and Mining Sciences, 38, 317-329.
22.Piteau, D. R., and Jennings, J. E. (1970). The effects of plan geometry on the stability of natural slopes in rock in the Kimberley area of south Africa, 1970 2nd ISRM Congress, Belgrade, Yugoslavia.
23.Thiem, G. (1906). Hydrologic methods: Leipzig, Gebhardt.
24.Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins, Journal of Geophysical Research, 68(16), 4795-4812.
25.Roscoe, K. H. (1970). The influence of strains in soil mechanics, Geotechnique, 20(2), 129-170.
26.Sharp, J.C., Maini, Y.N., and Harper, T.R. (1972). Influence of groundwater on the stability of rock masses, Transactions of the Institute Mining and Metallurgy, 81,13-20.
27.Snow, D.T. (1968). Rock fracture spacings, openings, and porosities, Journal of the Soil Mechanics and Foundations Division, 94(1), 73-91.
28.Snow, D.T. (1969). Anisotropic permeability of fractured media, Water Resources Research, 5, 1273-1289.
29.Villaescusa, E., and Brown, E.T. (1992). Maximum likelihood estimation of joint size from trace length measurements, Rock Mechanics and Rock Engineering, 25, 67-87.
30.Wei, Z.Q., Egger, P., and Descoeudres, F. (1995). Permeability predictions for jointed rock masses, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(3), 251-261.
31.Welch, L. A., and Allen, D. M. (2014). Hydraulic conductivity characteristics in mountains and implications for conceptualizing bedrock groundwater flow, Hydrogeology Journal, 22(5), 1003-1026.
32.Witherspoon, P. A., Wang, J.C.Y., Iwall, K., and Gale, J.E. (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water resource research, 16, 1016-1024.
33.Wyllie, D. C., and Chris, M. (2004). Rock Slope Engineering Civil and Mining, In: Hoek, E. and Bray, J.W., Eds., Rock Slope Engineering, London.
34.Zienkiewicz, O. C., Humpheson, C., and Lewis, R. W. (1975). Associated and non-associated visco-plasticity and plasticity in soil mechanics, GeÂotechnique, 25(4), 671-689.
35.Zienkiewicz, O. C., and Taylor, R. L. (1989). The Finite Element Method, 4th ed., London.
36.Zhang, Y., Chen, G., Zheng, L., Li, Y., and Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability, Canadian Geotechnical Journal, 50(3), 233-249.
37.台灣世曦工程顧問股份有限公司,2021。109 年山坡地總體檢及設施檢測委託技術服務案,國立陽明交通大學。
38.陳錦清、俞旗文,1994。坪林隧道沿線水力破裂法現地應力量測,地工技術雜誌,46,35-46。
39.翁作新,1987。淺談岩石邊坡分析,地工技術雜誌,19,19-25。
40.張光宗、林怡綾、葉柏村,2017。弱面與邊坡相對方位影響岩坡穩定性之研究,水土保持學報,3(49),2119-2130。
41.鄭允嘉,2006。節理岩體滲透係數之滲透異向性與應力引致異向性,國立中央大學應用地質研究所碩士論文。
42.潘國樑,1998。節理對岩體力學性質的影響,地工技術雜誌,70,107-108。