跳到主要內容

簡易檢索 / 詳目顯示

研究生: 唐謙仁
Chien-Jen Tang
論文名稱: 離子束濺鍍Ta2O5-TiO2與Ta2O5-SiO2混合膜之特性研究
Analysis of Ta2O5-TiO2 and Ta2O5-SiO2 composite films prepared by ion-beam sputtering deposition
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 95
語文別: 中文
論文頁數: 98
中文關鍵詞: 混合膜離子束濺鍍二氧化鈦二氧化矽五氧化二鉭皺波濾光片光學特性熱退火殘留應力
外文關鍵詞: composite film, ion beam sputtering, TiO2, SiO2, Ta2O5, Rugate filter, optical properties, annealing, residual stress
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學鍍膜中有兩個重要的課題,一、開發具有良好光學特性、機械特性及環境穩定性的薄膜材料。二、開發新的光學多層鍍膜設計方式。而新薄膜材料的開發有助上述兩課題的研究,本文所述利用兩現有的薄膜材料混合出所需特性的混合薄膜,是一個有意義的技術。
    混合膜之製鍍是使用射頻離子束濺鍍系統,為單一離子源同時轟擊兩個靶材,並利用步進馬達控制兩靶材的面積比例,以決定混合膜的成份比例。研究分為兩個部份,一、高折射率混合膜材料的研究,於實驗中使用Ta及Ti靶材製鍍出Ta2O5-TiO2混合膜,可將折射率及消光係數控制在純TiO2及Ta2O5薄膜間, Ta2O5-TiO2混合膜表面粗糙度約為0.1nm,Ta2O5-TiO2混合膜之殘留應力低於純TiO2薄膜,Ta2O5-TiO2混合膜於退火後仍是非晶結構,且混入Ta2O5後可消除TiO2薄膜於退火後之表面缺陷,使混合膜仍具有低的表面粗糙度,並可減少Ta2O5-TiO2混合膜於退火前後之殘留應力變化量,可減少高溫對薄膜機械性質的影響;二、漸變折射率混合膜之研究,於實驗中使用Ta及SiO2靶材製鍍出Ta2O5-SiO2混合膜,Ta2O5-SiO2混合膜可控制折射率變化由1.52至2.16,Ta2O5-SiO2混合膜具有低消光係數約小於10-4@550nm,Ta2O5-SiO2混合膜之表面粗糙度低於0.1nm,有較純Ta2O5及SiO2薄膜小的殘留應力值,且由實驗結果顯示,利用混合膜所製鍍之皺波折射率濾光片,會有比高低折射率材料堆疊之多層濾光片較小的殘留應力及基板變形量。上述結果可知,混合膜可作為高品質之光學鍍膜材料及漸變折射率光學鍍膜之應用。


    There are two important topics on optical coatings. First, we have to develop thin film materials with good optical properties, mechanical properties, and environmental stability. Second, we need to develop new methods to design optical multilayer coatings. The development of the new materials is helpful to study these two topics. Mixing two thin film materials is an interesting technology to develop new thin film materials.
    In this article, the radio frequency ion-beam sputtering deposition (RF-IBSD) system was used to prepare composite films. An ion source was used to bombard two targets simultaneously. The composite proportions are determined by the area ratio of two targets and the area ratio could be adjusted by moving the targets with a step motor. In this experimental have two parts. First, to study the material of high refractive index composite film, Ta2O5-TiO2 composite films prepared by Ti and Ta targets. The refractive indices and extinction coefficients of the composite films were found to be between those of the TiO2 and Ta2O5 films. The structure of the as-deposited films was amorphous, and the surface roughness was about 0.1 nm. The residual stress of the composite films was less than that of pure TiO2 film. The structure of the composite films after annealing was amorphous, with low surface roughness and slightly increased residual stress. Second, to study the gradient-index composite films, Ta2O5-SiO2 composite films were prepared by Ta and SiO2 targets. Ta2O5-SiO2 composite films with refractive indices varied from 1.52 to 2.16, and low extinction coefficient was about 10-4@550nm. All the composite films were amorphous and had surface roughness less than 0.1 nm. The residual stress and substrate deflection of rugate filter would be smaller than that of the multilayer filter which was made by stacking up alternatively with high and low refractive index materials. To sum up, the composite films could be used for high quality optical coating materials and gradient-index optical coating.

    中文摘要 I 英文摘要 II 致謝辭 III 目錄 IV 圖目錄 VII 表目錄 XI 符號表 XII 第一章 緒論 1 1-1 研究動機 1 1-1-1 Ta2O5、TiO2及SiO2材料特性 2 1-1-2 離子束濺鍍法(Ion beam sputtering)之特性 4 1-2 文獻回顧 7 1-3 論文架構 10 第二章 基本理論 11 2-1 薄膜成長理論 11 2-2 離子束濺鍍原理 19 2-3 薄膜應力 24 2-3-1 缺陷模態 (Defect Model) 26 2-3-2 表面張力模態 (Surface Tension Model) 26 2-3-3 晶粒邊界模態 (Grain Boundary Model) 27 2-3-4 敲擊模態 (Peening Model) 29 2-3-5 熱應力 31 第三章 實驗設備及量測工具 33 3-1 實驗設備 33 3-1-1 薄膜沉積製程 33 3-1-2 退火過程 35 3-2 量測儀器 36 3-2-1 可見光及近紅外光光譜儀 36 3-2-2 原子力顯微鏡(Atomic Force Microscope) 38 3-2-3 X-ray繞射儀 40 3-2-4 Twyman-Green應力量測儀 41 3-2-5 X-ray光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 43 3-2-6 掃描式電子顯微鏡(Scanning Electron Microscopy) 47 第四章 Ta2O5-TiO2混合膜特性分析 51 4-1 Ta2O5-TiO2混合膜特性 51 4-2 Ta2O5-TiO2混合膜之熱退火效應 58 第五章 Ta2O5-SiO2混合膜特性分析 68 5-1 Ta2O5-SiO2混合膜之光學特性分析 68 5-2 Residual stress之特性分析 77 5-3 Rugate filter之特性分析 83 第六章 結論 91 參考文獻 94

    1. E. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 6, 2969-2974 (1986).
    2. H. Sankur, W. J. Gunning, and J. F. DeNatale, “Intrinsic stress and structural properties of mixed composition thin film,” Appl. Opt. 27, 1564-1567 (1988).
    3. B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800-2805 (1989).
    4. S. Chao, C. K. Chang, and J. S. Chen, “TiO2-SiO2 mixed films prepared by the fast alternating sputter method,” Appl. Opt. 30, 3233-3237 (1991).
    5. J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, “Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation,” Appl. Opt. 37, 90-96 (1996)..
    6. T. U. Ryu, S. H. Hahn, S. W. Kim, and E. J. Kim, “Optical, mechanical and thermal properties of MgF2-ZnS and MgF2-Ta2O5 composite thin films deposited by co-evaporation,” Opt. Eng. 39, 3207-3213 (2000).
    7. M. Veszelei, L. Kullman, C. G. Granqvist, N. von Rottkay, and M. Rubin, “Optical constants of sputter-deposited Ti-Ce oxide and Zr-Ce oxide films,” Appl. Opt. 37, 5993-6001 (1998).
    8. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering,” Thin Solid Films 338, 105-109 (1999).
    9. A. Ritz, “TaTiOx layers prepared by magnetron sputtering from separate metal targets,” Surf. Coat. Tech. 174-175, 651-654 (2003).
    10. M. Cevro, “Ion-beam sputtering of (Ta2O5)x-(SiO2)1-x composite thin films,” Thin Solid Films 258, 91-103 (1995).
    11. C. C. Lee, C. J. Tang, and J. Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt. 45, 1333-1337 (2006)
    12. C. C. Lee and C. J. Tang, “TiO2-Ta2O5 composite thin films deposited by Radio Frequency Ion-Beam Sputtering,” Appl. Opt. 45, 9125-9131 (2006)
    13. S. Chao, W. H. Wang, M. Y. Hsu, and L. C. Wang, “Characteristics of ion-beam-sputtered high refractive-index TiO2-SiO2 mixed films,” J. Opt. Soc. Am. A 16, 1477-1483 (1996).
    14. S. Chao, W. H. Wang, and C. C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40, 2177-2182 (2001).
    15. W. H. Wang, and S. Chao, “Annealing effect on ion-beam-sputtered titanium dioxide film,” Opt. Lett. 23, 1417-1419 (1998).
    16. J. C. Hsu, and C. C. Lee, “Single- and dual-ion-beam sputter deposition of titanium oxide films,” Appl. Opt. 37, 1171-1176 (1998).
    17. C. C. Lee, H. C. Chen, and C. C. Jaing, “Effect of thermal annealing on the optical properties and residual stress of TiO2 films produced by ion-assisted deposition”, Appl. Opt. 44, 2996-3009 (2005).
    18. L. S. Hsu, R. Rujkorakarn, J. R. Sites, and C. Y. She, “Thermally induced crystallization of amorphous-titania films,” J. Appl. Phys. 59 (10), 3475-3480 (1986).
    19. M. R. Kozlowski, “Damage-resistant laser coating,” in Thin films for Optical System, F. R. Flory, ed. (Marcel Dekker, New York, 1995), pp. 521-549.
    20. W. H. Southwell, “Spectral response calculations of rugate filters using coupled-wave theory,” J. Opt. Soc. Am. A 5, 1558-1564 (1988).
    21. W. H. Southwell, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949-2951 (1989).
    22. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters”, Appl. Opt. 28, 5091-5094 (1989).
    23. M. Zukic and K. H. Guenther, “Optical Coatings with Graded Index Layers for High Power Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 895, 271-277 (1988).
    24. R. Jacobsson, “Inhomogeneous and Co-evaporated Homogeneous Film for Optical Applications,” Physics of Thin Film, 8, 51-98(1975).
    25. C. C. Lee, C. L. Tien, and J. C. Hsu “Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering,” Appl. Opt. 41, 2043-2047 (2002).
    26. S. Shao, J. Shao, H. He, and Z. Fan, “Stress analysis of ZrO2/SiO2 multilayers deposited on different substrates with different thickness periods,” Opt. Lett. 30, 2119-2121 (2005)
    27. N. Kaiser, “Review of the fundamentals of thin-film growth,” Appl. Opt. 41, 3053-3060 (2002).
    28. J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol. 11, 666-672 (1974).
    29. R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” J. Vac. Sci. Technol. A 2, 500-503 (1984).
    30. W. R. Grove, Phil. Trams. Roy. Soc. London, 142, 87 (1852).
    31. G. K. Wehner, “Threshold Energies for Sputtering and the Sound Velocity in Metals,” Phys. Rev. 93, 633 (1954).
    32. P. J. Martin, “Review Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1-25 (1986).
    33. P. Sigmund, “Theory of Sputtering Yield of Amorphous and Polycrystalline Target,” Phys. Rev. 184, 383 (1969).
    34. H. Fetz, Z. Phys. 119, 590 (1942).
    35. J. E. Mahan, “Physical Vapor Deposition of Thin Films,” John Wiley & Sons, Inc. (2000), pp. 218.
    36. 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 第四版, pp.283 (1999).
    37. J. R. Roth, “Industrial Plasma Engineering Volume 1: Principles,” Institute of Physics Publishing Bristol and Philadelphia, pp.102~106 (1995).
    38. R. W. Hoffman, in physical of nonmetallic Thin films, edited by C.H.S. Dupuy and A. Cachard, Plenum Press: New York,pp.273 (1969).
    39. E. Suhir and Y. C. Lee, in Hand book of Electronic Materials, Vol.1, ed. C. A. Dostal, ASM International, Metals Park,Ohio (1989).
    40. J. D. Finegan and R.W. Hoffman, “Stress anisotropy in evaporated Iron Films,” J. Appl. Phys. 30, 597-598 (1959).
    41. H. S. Story, R.W. Hoffman, J. Appl. Phys. 27, 193 (1956).
    42. R. W. Hoffman, F.J. Anders, J. Appl. Phys. 23, 231 (1953).
    43. B. A. Movchan, A. V. Demchishin, “Study of the structures and properties of thick vacuum condenstates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide”, Phys. Met. Metallorg. 28, 83(1969).
    44. H. K. Pulker. “Mechanical properties of optical films,” Thin solid film 89, 191 (1982).
    45. R. C. Sun, T. C. Tisone, P. D. Cruzan, ”The origin of internal stress in low-voltage sputtered tungsten films,” J. Appl. Phy. 46, No1 (1975).
    46. W. D. Nix, “Mechanical Properties of thin films,” Metallurgical Trans. A20, 2217-2245 (1989).
    47. J. A. Floro, E. Chason, S. R. Lee, “Real time measurement of epilayer strain using a simplified wafer curvature technique,” Mater. Res. Soc. Symp. Proc. 406, 491 (1996).
    48. F. M. D’Hecurle, “Aluminum films deposited by rf sputtering,” Metallurgical Trans. I, 725-732 (1970).
    49. K. H. Muller, “Model for ion assisted thin film densification.” J. Appl. Phys. 59, 2803 (1986).
    50. K. H. Muller, “Ion-beam induced epitaxial vapour-phase growth: a molecular dynamics study,” Phys. Rev.B35, 7906 (1987).
    51. K. H. Muller” Stress and microstructure of sputter deposited thin films: molecular dynamics investigations,” J. Appl. Phys. 62, 1796 (1987).
    52. H. Windischmann, “An Intrinsic Stress Scaling Law for Polycrystalline Thin Film Prepared by Ion Beam Sputtering”, J. Appl. Phys. 62, 1800-1807 (1987).
    53. C. A. Davis, “A simple model for the formation of compressive stress film by ion bombardment,” Thin solid films 226, 30 (1993).
    54. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constant n, k and the thickness of the weakly absorbing thin film,” J. Phy. E: Sci. Inst. 9, 1002-1004 (1976).
    55. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
    56. K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamirin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson, I. Lindgren, and B. Lindgren, Atomic ,Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist &Wiksells, Stockholm, 1967.
    57. C. J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, New York, 1993.
    58. J. Chastain and R. C. King, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, Minn., 1995), pp. 44-45, pp. 72-73, and pp. 170–171.
    59. D.R. Lide, CRC Handbook of Chemistry and Physics, 82. (CRC Press, London, 2001), pp. 9-75.
    60. D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys. 50 (8), 704-709 (1982).
    61. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26-30 (1981).

    QR CODE
    :::