| 研究生: |
黃弘毅 Hung-I Huang |
|---|---|
| 論文名稱: |
奈米金屬狹縫之光穿透增益研究 Research of The Transmission Enhancement Through a Nano-scaled Metallic Slit |
| 指導教授: |
張正陽
Jenq-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 奈米 、金屬狹縫 、光穿透增益 、次波長 |
| 外文關鍵詞: | metal slit, light transmission enhancement, nano, subwavelength |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從1998 年T. W. Ebbesen 等人分別在Natrue 以及Physical
Review B 期刊上發表次波長金屬孔洞陣列的穿透光異常增強現象,
並且引起之後廣泛相關的研究。另外也可以在次波長金屬狹縫周圍放置週期性的微結構用來得到較高的光穿透效率,而擁有高穿透效率的次波長結構就可以利用作為近場光儲存,近場顯微鏡和光學元件。
利用表面結構對於次波長狹縫得到較高的光穿透效率而言,其傳
遞過程可以分成三個步驟:藉表面微結構使得入射光耦合到金屬表面傳遞,耦合到表面的光傳遞經過金屬狹縫,藉著出射面微結構使的在出射面的光再次的散射到自由空間中。明顯的,當入射面有越多的能量耦合到表面,就會得到更高的穿透效率。雖然已經有很多對金屬奈米狹縫的光穿透效率增強機制的研究,但是他們所得到的穿透效率依然很低,一部份的理由就是表面微結構激發的能量在經過其他表面結構的時候產生散射,產生能量的散失。
在此,我們利用CDEW 以及FDTD 演算法去分析奈米金屬狹縫
的光學特性和金屬表面奈米結構的散射效應。藉此,我們求得一高轉換效率及低散射的奈米結構並利用此結構去做為奈米狹縫的光穿透效率增強機制,使得奈米金屬狹縫的穿透效率高達27%。
Since Ebbesen et al. reported the observation of enhanced transmission of light through nano hole arrays in an optically opaque metallic film, this observations have
stimulated a large body of research interesting. Beside a nano hole array, it was found that that a nano aperture surrounded by small periodic corrugations on the entrance
plane of a metallic film can also perform a large transmission enhancement. This kind of device thus holds an immense potential for use in applications, where both high throughput and high resolution are required, such as near-field data storage, near-field microscope and photonic crystal coupler.
It has been discussed that the transmission process through a trench-surrounded slit can be separated into three independent steps: coupling in, transmission through
the aperture and coupling out. It is straightforward that the more free-space light is converted into surface waves and then coupled into the nano-scaled aperture, the
higher the transmission is. Although many researches focused on enhancing the transmission through a nano-scaled metallic slit, the transmission is still too low for
practical applications. Part of the reason for this is that some of the energy is lost during the propagation toward the aperture due to scattering by the surface
corrugations.
In this thesis, we analyze the optical properties of a nano-scaled meatallic slit and the scattering effect of the patterned trench structure on the entrance plane using both CDEW and FDTD method. A trench with low scattering loss was designed. An overall transmission over 27% (Normalized by 6.5μm Gaussian beam) through a nano-scaled slit can be achieved by bordering the low scattering loss trenches.
[1] H. A. Bethe, .Theory of diffraction by small holes,. Phys. Rev. 66, 163-182 (1944).
[2] C.J. Bouwkamp, .Diffraction theory,. Rep. Prog. Phys. 17, 35-100 (1954).
[3] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio & P.A. Wolff, .Extraordinary optical transmission through sub-wavelength hole arrays,. Nature 391, 667-669 (1998).
[4] H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen & H. Lezec, .Surface plasmons enhance optical transmission through subwavelength holes,. Phys. Rev. B 58, 6779-6782 (1998).
[5] E. Popov, M. Nevi_ere, S. Enoch & R. Reinisch, “Theory of light transmission through subwavelength periodic hole arrays,” Phys. Rev B 62, 16100-16108 (2000).
[6] Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings
with very narrow slits”, Phys. Rev. Lett. 88, 057403 (2002).
[7] H.F. Schouten, T.D. Visser, G. Gbur, D. Lenstra and H. Blok, ”Connection between phase singularities and the radiation pattern of a slit in a metal plate”, Phys. Rev. Lett. 93, 173901 (2004); ”Creation and annihilation of phase singularities near a sub-wavelength slit”, Opt. Exp. 11, 371-380 (2003).
[8] K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes”, Phys. Rev. Lett. 92, 183901 (2004).
[9] H.J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays”, Opt. Expr. 12, 3629-3651 (2004).
[10] U. Fano, .Effects of con_guration interaction on intensities and phase shifts,. Phys. Rev. 124, 1866-1878 (1961).
[11] C. Genet, M.P. van Exter, and J.P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra”, Opt. Commun. 225, 331-336 (2003).
[12] E. Betzig and R. J. Chichester, ‘‘Single molecules observed by near-field scanning optical microscopy,’’ Science 262, 1422 (1993)
[13] E. H. Synge, ‘‘A suggested method for extending microscopic resolution into the ultra-microscopic region,’’ Philos. Mag. 6, 356 (1928)
[14] D. W. Pohl and D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
[15] M. Ohtsu and H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999)
[16] C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,”
Philips Res. Rep. 5, 401 (1950) [17] A. Roberts, ‘‘Small-hole coupling of radiation into a near-field probe,’’ J. Appl. Phys. 70, 4045(1991)
[18] T. Thio, K. M. Pellerin, and R. A. Linke, “Enhanced light transmission through a single 53 subwavelength aperture”, Opt. Lett. 24, 1972 (2001)
[19] T. Thio, J. J. Lezec, and T. W. Ebbesen, “Strongly enhanced optical transmission through subwavelength holes in metal films”, Phycia B 279, 90 (2000)
[20] T. Thio, J. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke,“Giant optical transmission of subwavelength apertures: Physics and applications”, Nanotechnology 13, 429 (2002)
[21] J. A. Porto, F. J. Garcìa-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings
with very narrow slits”, Phys. Rev. Lett. 83, 2845 (1999)
[22] S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings”, Phys. Rev. B 63, 033107 (2001)
[23] F. J. Garcìa-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martìn-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit”, Phys. Rev. Lett. 90(21),213901(2003)
[24] A. Degiron and T. W. Ebbesen, “Analysis of the transmssion process through single aperture surrounded by periodic corrugations”, Opt. Exp. 12(16), p. 3694-3700 (2004)
[25] H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martìn-Moreno, F. J. Garcìa-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture”, Science 297, 820 (2002)
[26] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen”, Phys. Rev. Lett. 86, 5601 (2001)
[27] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
[28] J. Gmz-Rivas, C. Schotsch, P. H. Bolovar, and H. Kurz, “Enhanced transmission of THz radiation
through subwavelength holes“ Phys. Rev. B 68, 201306(R) (2003)
[29] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations
in isotropic media,” IEEE Trans. Ant. Prop. 14, 302-307, 1966.
[30] A. Taflove, and S. C. Hagness, “Computational electrodynamics: The Finite-Difference Time-Domain method 2nd Ed,” Artech House Publishers, Boston, 2000.
[31] P. Drude, Ann. Phys., Lpz. 1 566 (1900)
[32] L. R. Hooper and J. R. Sambles, “Surface plasmon polaritons on thin-slab metal gratings”, Phys. Rev. B., 67, 235404-1(2003)
[33] E. D. Palik, “Handbook of optical constants of solids”, New York: Academic Press (1985)