跳到主要內容

簡易檢索 / 詳目顯示

研究生: 萬惠雯
Hui-Wen Wan
論文名稱: 基於膚色保存之情感色彩轉換機制
A Mechanism for Affective Color Transfer Based on Skin Color Preservation
指導教授: 施國琛
Timothy K. Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 77
中文關鍵詞: 情感運算色彩轉換情感分析情感語意影像檢索影像標記
外文關鍵詞: Affective computing, color transfer, affective analysis, emotional semantic image retrieval, image labeling
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正如我們所知,在影像中,顏色是一個主要的特徵,且影像中的顏色,將會決定影像傳遞給人的感覺。而攝影師和設計師通常藉由加強作品中的整體顏色,傳遞他們想表達的感覺。所以,更改圖片中的顏色將可以改變圖片傳遞的感覺。
    本論文中,提出了一個情感色彩轉換的機制,利用參考圖的顏色分佈,去轉換原圖的整體顏色,使得原圖的顏色主題和參考圖相似,進而改變原圖所傳遞的感覺。轉換過後的結果圖,也可利用本論文中所提出的情感分析來評量,結果圖的情感分類將會和參考圖的分類一致。另外,為了使情感色彩轉換機制適用於所有圖片,本論文提出了一個膚色保存步驟,針對在其他色彩轉換方法下有問題的人像圖片類型作處理,避免在膚色上過度修改造成色彩轉換結果失真,同時,在色彩轉換過程中,著重保護圖片上顏色的和諧度,將原圖和結果圖的透明度結合,減少結果圖片視覺上失真的問題。總言之,本論文提出適用於任何圖片的情感色彩轉換機制,包括一般圖片和包含人像的圖片。同時,論文提出的另一個機制為圖片情感分析。首先,擷取圖片中的主要顏色,再利用事先定義好的情感類別來對圖片做分類。為了確保擷取的主要顏色能代表圖片的整體顏色,進而提升我們情感分析的準確率,在分析過程中,我們使用顯著圖來輔助圖片色彩的擷取。
    最後,情感分析和情感色彩轉換的結果將驗證我們提出方法的可行且有效性。情感分析結果與實際圖片傳遞給人的感覺一致,且拿我們提出的情感色彩轉換機制和其他色彩轉換方法相比較,我們的方法可以得到比較好的結果。


    As we know, color, one of important features for composing images, can affect people on emotional level. Photographers and designers usually enhance desired color in their works to convey feeling. Editing color theme of images achieves the goal to change the emotion evoked by images.
    In this thesis, a method to change the emotion in images by editing color content called affective color transfer is proposed, we focus on implementing color transfer in images to make overall color theme of input image be similar with reference image. The result can be evaluated by affective analysis proposed in our work, and the affective class of result image is consistent with reference image. The proposed skin color preserving phase prevents skin color from over-modification in original color transfer. Furthermore, we attach importance about the harmony of output image, combing both the opacity of input and output image in color transfer to reduce visual distortion. The proposed method performs well in not only general images but also images which exit human. Another mechanism is affective analysis in images. First, we define affective classes and then extract affective colors in the image to classify the affective class. By using saliency map, we extracted the affective color in the image exactly, and result of affective analysis is improved.
    Finally, experiment results of affective analysis and affective color transfer have confirmed the effectiveness of proposed method. Affective classes predicted by affective analysis accord with the emotion evoked by images. We compare the algorithm of color transfer between proposed method and other methods, where our method performs better.

    摘要 i Abstract ii Acknowledgements iii Contents iv List of Figures vi List of Tables viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background 2 1.3 Thesis Organization 4 Chapter 2 Related Works 6 2.1 Color and Emotion 6 2.2 Color Transfer in Images 8 2.3 Color Spaces 12 2.4 Color Quantization 14 2.5 Graph-Based Visual Saliency 16 2.6 Skin Detection 18 2.7 Morphology 21 Chapter 3 Proposed Method 25 3.1 System Overview 25 3.2 Affective Features and Corresponding Emotions 26 3.3 Affective Prediction 28 3.4 Affective Color Transfer 32 Chapter 4 Experimental Results and Discussions 44 4.1 The Database 44 4.2 Experimental Results and Discussion 46 4.3 Applications 59 Chapter 5 Conclusions and Future Works 60 5.1 Conclusions 60 5.2 Future Works 61 References 62

    [1] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color Transfer between Images,” IEEE Journals & Magazines on Computer Graphics and Applications, vol. 21, no. 5, pp. 34- 41, Sep./ Oct. 2001.
    [2] X. Z. Xiao and L. Z. Ma, “Color Transfer in Correlated Color Space,” ACM international conference on Virtual reality continuum and its applications, pp. 305- 309, 2006.
    [3] C. K. Yang and L. K. Peng, “Automatic Mood-Transferring between Color Images,” IEEE Journals & Magazines on Computer Graphics and Applications, vol. 28, no. 2, pp. 52- 61, Mar.- Apr. 2008.
    [4] B. Wang, Y. Yu, T. T. Wong, C. Chen, and Y. Q. Xu, “Data-Driven Image Color Theme Enhancement,” ACM Transactions on Graphics (TOG), vol. 29, no. 6, Dec. 2010.
    [5] L. Shapira, A. Shamir, and D. Cohen-Or, “Image Appearance Exploration by Model-Based Navigation,” Computer Graphics Forum, vol. 28, no. 2, pp. 629- 638, 2009.
    [6] N. Murray, S. Skaff, L. Marchesotti, and F. Perronnin,” Towards Automatic Concept Transfer,” ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 167- 176, 2011.
    [7] D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, and Y. Q. Xu, “Color Harmonization,” ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 624- 230, July 2006.
    [8] T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring Color to Greyscale Images,” ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 277- 280, July 2002.
    [9] A. Levin, D. Lischinski, and Y. Weiss, “Colorization Using Optimization,” ACM Transactions on Graphics (TOG), vol. 23, no. 3, pp. 689- 694, Aug. 2004.
    [10] L. Yatziv and G. Sapiro, “Fast Image and Video Colorization Using Chrominance blending,” IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1120- 1129, May 2006.
    [11] J. Machajdik and A. Hanbury, “Affective Image Classification using Features Inspired by Psychology and Art Theory,” International conference on Multimedia, pp. 83- 92, 2010.
    [12] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Studying Aesthetics in Photographic Images Using a Computational Approach,” the 9th European conference on Computer Vision, vol. Part III, pp. 288- 301, 2006.
    [13] L. C. Ou, M. Ronnier Luo, A. Woodcock, and A. Wright, “A Study of Colour Emotion and Colour Preference. Part I: Colour Emotions for Single Colours,” Color Research & Application, vol. 29, no. 3, pp. 232-240, Jun. 2004.
    [14] L. C. Ou, M. Ronnier Luo, A. Woodcock, and A. Wright, “A study of colour emotion and colour preference. Part II: Colour Emotions for Two-colour Combinations,” Color Research & Application, vol. 29, no. 4, pp. 292- 298, Aug. 2004.
    [15] G. Csurka, S. Skaff, L. Marchesotti, and C, Saunders, “Learning Moods and Emotions from Color Combinations,” the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, pp. 298- 305, 2010.
    [16] H. Feng, M. Lesot, and M. Detyniecki, “Using Association Rules to Discover Color-emotion Relationships Based on Social Tagging,” the 14th international conference on Knowledge-based and intelligent information and engineering systems: Part I, pp. 544- 553, 2010.
    [17] S. Kobayashi, “Color image scale,” Publishing of Kodansha. 1911.
    [18] Image Research Institute Inc (I.R.I) 著,「色彩密碼—專業設計的色彩美學Color Combination」,楊永鳳 譯,碁峰資訊,台北市,民國九十六年。
    [19] D.L. Ruderman, T.W. Cronin, and C.C. Chiao, “Statistics of Cone Responses to Natural Images: Implications for Visual Coding,” J. Optical Soc. of America, vol. 15, no. 8, pp. 2036- 2045, 1998.
    [20] K. Konstantinides, and K. Yao, “Statistical Analysis of Effective Singular Values in Matrix Rank Determination,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, no. 5, May 1988.
    [21] R. C. Gonzalez and R. E. Woods, “Digital Image Processing,” 2nd Edition,Prentice Hall, 2002.
    [22] J. Harel, C. Koch, and P. Perona, “Graph-Based Visual Saliency,” Proceedings of Neural Information Processing Systems (NIPS), pp. 545- 552, 2006.
    [23] C. C. Chiang, W. K. Tai, M. T. Yang, Y. T. Huang, and C. J. Huang, “A Novel Method for Detecting Lips, Eyes and Faces in Real Time,” Journal of Real-Time Image Processing - Special issue on spectral imaging, vol. 9, no. 4, pp. 277- 287, Aug. 2003.
    [24] M. Soriano, S. Huovinen, B. Martinkauppi, and M. Laaksonen, “Using the Skin Locus to Cope with Changing Illumination Conditions in Color-Based Face Tracking,” IEEE Nordic Signal Processing Symposium, pp. 383- 386, 2000.
    [25] 鐘仁厚(王文俊 教授指導),「基於模糊邏輯之臉部表情辨識」, 國立中央大學, 電機工程學研究所,碩士論文,民國九十七年。
    [26] J. Serra, “Image Analysis and Mathematical Morphology,” Academic Press, Inc. Orlando, FL, USA, 1983.
    [27] X. Xiao and L. Ma, “Gradient-Preserving Color Transfer,” Visualization & Computer Graphics , Computer Graphics Forum, vol. 28, no. 7, pp. 1879- 1886, Oct. 2009.

    QR CODE
    :::