| 研究生: |
徐啟祐 Chi-Yu Hsu |
|---|---|
| 論文名稱: |
鋁矽合金中微孔的形成 |
| 指導教授: |
施登士
Teng-Shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 氣袋 、熱成長氧化膜 、介面 |
| 外文關鍵詞: | thermal oxide film, interface, air pocket |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究加熱不同鋁合金形成熱合氧化膜,並採用三明治融合試片法來探討氫及融合時氧化膜分解對氣孔成核的影響。試驗中所採用的材料有純度達99.999wt%的純鋁靶材及矽含量為1.2wt%與7.6wt%的鋁矽合金,試片切割成10mm × 10mm × 6mm的尺寸後使用乾磨方式研磨試片表面至P2000號砂紙。
試片於前處理完成後,將純鋁試片置於610℃持温25小時以及鋁-1.2矽置於570℃持温25小時以生成熱合氧化膜。生長完熱合氧化膜的試片分別與純鋁、鋁-7.6矽試塊進行三明治試片融合20分鐘,待爐冷至室溫後觀察融合後試片介面。
在純鋁/純鋁氧化膜/純鋁試片融合後的介面上可觀察到的不同的凹孔,其中曲率半徑最大可達14.82μm,接觸角為164.7°。於鋁-7.6矽/純鋁氧化膜/純鋁三明治融合試片介面觀察到凹孔的最大曲率半徑為7.89μm,但是接觸角卻有約20°的變動範圍,由於試片內的矽會在高溫時與氧化膜及鋁液反應生成矽或氧化矽,介面上的氣袋在成長時受其影響造成氣袋受力的動態不平衡而形成微氣泡脫離介面上浮,因此使得相同曲率半徑的氣袋可能產生接觸角達20°的變化範圍。鋁-1.2矽所生長的氧化膜結構鬆散且不具微通道,氧化膜在三明治試片融合時容易分解,形成氣袋附著氧化膜顆粒而懸浮於熔液中。
純鋁/純鋁氧化膜/純鋁融合試片會於氧化膜介面上形成氣袋;而純鋁/鋁-1.2矽氧化膜/鋁-1.2矽三明治融合試片會形成微氣孔懸浮於熔並殘留在凝固後的試片中。
The present study investigated the influence of hydrogen and thermally-formed oxide layer on the foundation of air pocket and micro-bubble. High purity aluminum (99.999 wt.%) and Al-XSi alloy (X=1.2 wt% and 7.6 wt%) were used in this study.
The cube samples were prepared in size 10 mm × 10 mm × 6 mm and polished by P400 to P2000 abrasive papers. These cube samples were moved to the muffle furnace and then heated to 610℃ and 570℃ for pure aluminum and aluminum-silicon alloys, respectively. Two different cube were heated for 25 hrs to develop thermally-formed oxide film.
After sandwich samples(Al/oxide film/Al, Al-7.6Si/ oxide film/Al, Al/oxide film/Al-1.2Si) were fused in the muffle furnace, the sample were sectioned to observe the air pocket on the interface of fusion. The radius of curvature and contact angle of air-pore on the interface were increased.
The maximum contact angle and curvature of radius for air pocket in the pure aluminum sandwich specimen interface was 164.7° and 14.82μm. From SEM observation, no micro-bubble has been trapped in the top cube sample. Silicon changed the surface tension of liquid aluminum and the wetting condition between liquid aluminum and oxide film, the maximum curvature of radius were reduced to 7.89μm and the variation of contact angle was about 20° , from 143° to 164°. Micro-bubble trapped in the top sample has been observed.
The structure of Al-1.2Si thermally-formed oxide layer was loose. The sandwich sample show no(or few) apparent air-pocket on the interface of fusion. However, micro-bubble along with inclusion has been observed in the cube sample.
1.D. E. J. Talbot, “Effect of Hydrogen in Aluminum, Magnesium, Copper, and
Their Alloys”, International Metallurgical Reviews, 20(1975), 166-184.
2.R. A. Robie, B. S. Hemingway, J. R. Fisher, “Thermodynamics Properties of
Minerals and Related Substances at 298.15K and 1 Bar (105 Pascal) Pressure
and at Higher Temperature”, U.S. Government Printing Office, Washington,
1978, p137-248.
3.I. J. Polmear, Light Alloys:Metallurgy of the Light Metals, 3rd ed., John
Wiley & Sons, New York, 1995.
4.C. R. Loper, Jr., “Fluidity of Aluminum-Silicon Casting Alloys, AFS
Transactions”, 100 (1992), 533-538.
5.P. S. Santos, H. S. Santos, S. P. Toledo, “Standard Transition Aluminas.
Electron Microscopy Studies”, Materials Research, 3 (2000) , 104-114.
6.S. W. Whangbo, Y. K. Choi, W. S. Koh, K. B. Chung, H. K. Jang, C. N. Whang,
“Effect of Silicon Surface States on the Properties of Epitaxial Al2O3
Films”, Thin Solid Films, 398-399 (2001), 480-484.
7.L. D. Hart, Esther Lense, Alumina Chemicals:Science and Technology
Handbook, American Ceramic Society, Westerville, Ohio, 1990, p.32, 50
8.William D. Callister, Jr., Materials Science and Engineering:An
Introduction, 4th ed, John Wiley & Sons, New York, 1997, p.38.
9.M. R. Alexander, G. E. Thompson, G. Beamson, “Characterization of the
Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron Spectroscopy:
A Procedure for Curve Fitting the O 1s Core Level”, Surface and Interface
Analysis, 29 (2000), 468-477.
10.林敬二、楊美惠、楊寶旺、廖德章、薛敬和,英.中.日 化學大辭典,高立圖書有限
公司,台北,2000,p.70、380、927、1364
11.W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd
ed, Wiley, New York, 1976, p.64, 65.
12.I. Levin, D. Brandon, “Metastable Alumina Polymorphs:Crystal Structures
and Transition Sequences”, Journal of the American Ceramic Society, 81
(1998), 1995-2012.
13.宋啟瑞,在鋁上成長堰層陽極氧化膜的研究,國立交通大學材料科學與工程研究所碩士
班論文,新竹,民國九二年七月
14.Per Kofstad, High Temperature Oxidation of Metals, John Wiley & Sons, New
York, 1966.
15.徐東明,熱成長氧化膜防治S44660不銹鋼氫脆之研究,國立中興大學材料工程學研究所
碩士班論文,台中,民國八八年七月
16.P. E. Doherty, R.S. Davis, “Direct Observation of the Oxidation of
Aluminum Single-Crystal Surfaces”, Journal of Applied Physics, 34 (1963),
619-628.
17.P. E. Doherty, R.S. Davis, “The Formation of Surface Pits by the
Condensation of Vacancies”, Acta Metallurgica, 7(1959), 118-123.
18.L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer,
“Composition and Chemical State of the Ions of Aluminium-Oxide Films Formed
by Thermal Oxidation of Aluminum”, Surface Science, 506(2002), 313-332.
19.P. C. Snijders, L. P. H. Jeurgens, W. G. Sloof, “Structure of Thin
Aluminium-Oxide Films Determined From Valence Band Spectra Measured Using
XPS”, Surface Science, 496(2002), 97-109.
20.O. Salas, H. Ni, V. Jayaram, K. C. Vlach, C. G. Levi, R. Mehrabian,
“Nucleation and Growth of Al2O3/metal Composites by Oxidation of Aluminum
Alloys”, Journal of Materials Research, 6(1991), 1964-1981.
21.S. W. Whangbo, Y. K. Choi, H. K. Jang, Y. D. Chung, I. W. Lyo, C. N. Wang,
“Effect of Oxidized Al Prelayer for the Growth of Polycrystalline Al2O3
Films on Si Using Ionized Beam Deposition”, Thin Solid Films, 388(2001),
290-294.
22.J. F. Moulder, W. F. Stickle, P. E. Sobal, K. D. Bomben, Handbook of X-ray
Photoelectron Spectroscopy, Physics Electronics, Inc., Minnesota USA, 1992
p.213-239.
23.Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Fundamentals of
Fluid Mechanics, John Wiley & Sons, Ioc. Canada, p.26.
24.Paul Joes, Dynamic Surface Phenomena, VSP BV, Netherlands, p.2.
25.Aniello Mennella and Norman R. Morrow, “Point-by-Point Method of
Determining Contact Angles from Dynamic Wilhelmy Plate Data for
Oil/Brine/Solid Systems”, Journal of Colloid and Interface Science, 172
(1995), 48-55.
26.Sherril D. Christian, Andrew R. Slagle, Edwin E. Tucker, John F. Scamehorn,
“ Inverted Vertical Pull Surface Tension Method”, Langmuir, 14(1998), 3126-
3128.
27.S. H. Anastasiadis, J.-K. Chen, J. T. Koberstein, A. F. Siehel, J. E. Sohn,
J. A. Eerson, “The Determination of Interfacial Tension by Video Image
Processing
of Pendant Fluid Drops”, Journal of Colloid and Interface Science, 119
(1987), 55-66.
28.Howard H. Hu and Daniel D. Joseph, “Evolution of a Liquid Drop in a
Spinning Drop Tensiometer”, Journal of Colloid and Interface Science, 162
(1994), 331-339.
29.V. I. Kovalchuk, S. S. Dukhin, “Dynamic effects in maximum bubble pressure
experiments”, Colloids and Surfaces A: Physicochemical and Engineering
Aspects,192(2001), 131-155.
30.Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito,“Effects of
surface roughness on wettability”, Acta Metallurgica, 46(1998), 2313-2318.
31.Abraham Marmur, “Contact-angle hysteresis on heterogeneous smooth surface:
theoretical comparison of the captive bubble and drop method” Colloids And
Surfaces A, 136(1998), 209-215.
32.J.P. Anson, R.A.L. Drew, J.E.Gruzleski, “The Surface Tension of Molten
Aluminum and Al-Si-Mg Alloy Under Vacuum and Hydrogen Atmospheres”,
Metallurgical and Materials Transactions B, 30(1999), 1027-1032.
33.Ping Shen, Hidetoshi Fujii, Taihei Matsumoto, Kiyoshi Nogi ,”Critical
Factors Affecting the Wettability of α-Alumina by Molten Aluminum”, Journal
of the American Ceramic Society, 87(2004), 2151-2159.
34.V. Sarou-Kanian, F. Millot, J. C. Rifflet,” Surface Tension and Density of
Oxygen-Free Liquid Aluminum at High Temperature”, International Journal of
Thermophysics, 24(2003), 277-286.
35.Hsien-Nan Ho, Shinn-Tyan Wu, “The Wettability of Molten Aluminum on
Sintered Aluminum Nitride Substrate”, Materials Science & Engineering A, 248
(1998), 120-124.
36.John Campball, Castings, ELSEVIER, United Kingdom, 2003, p.169.
37.A.V. Byakova, S.V. Gnyloskurenko, T. Nakamura, O.I. Raychenko, “Influence
of Wetting Condition on Bubble Formation at Orifice in an Inviscid Liquid
Mechanism of Bubble Evolution”, Colloids and Surface A, 229(2003), 19-32.
38.S.V. Gnyolskurenko, A.V. Byakova, O.I. Raychenko, T. Nakamura, ”Influence
of Wetting Conditions on Bubble Formation at Orifice in an Inviscid Liquid.
Transformation of bubble Shape and Size”, Colloids and Surface A, 218
(2003), 73-87.
39.Robert E. Read-Hill, Reza Abbaschian, Physical Metallurgy Principle, PWS
Publishing Company, USA, p.497.
40.Teng-Shih Shih and Zin-Bou Liu, ”Thermally-Formed Oxide on Aluminum and
Magnesium”, Materials Transactions, 47(2006), 1347-1353.
41.John Campball, Castings, ELSEVIER, United Kingdom, 2003, p.11.
42.D.E.J Talbot, “Effects of hydrogen in aluminum, magnesium, copper and
their alloys”, International Metallurgical Review, 20(1975), 166-184.
43.John Campball, Castings, ELSEVIER, United Kingdom, 2003, p.3.
44.Teng-Shih Shih and In-Chan Chen, “Decomposition and Reaction of Thermal-
Formed Alumina in Aluminum Alloy Castings”, Materials Transactions, 46
(2005) , 1868-1876.
45.Tailian Chen, J.N. Chung, “Coalescence of bubbles in nucleate boiling on
micro-heaters”, International Journal of Heat and Mass Transfer, 45(2002),
2329-2341.