跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐啟祐
Chi-Yu Hsu
論文名稱: 鋁矽合金中微孔的形成
指導教授: 施登士
Teng-Shih Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 114
中文關鍵詞: 氣袋熱成長氧化膜介面
外文關鍵詞: thermal oxide film, interface, air pocket
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究加熱不同鋁合金形成熱合氧化膜,並採用三明治融合試片法來探討氫及融合時氧化膜分解對氣孔成核的影響。試驗中所採用的材料有純度達99.999wt%的純鋁靶材及矽含量為1.2wt%與7.6wt%的鋁矽合金,試片切割成10mm × 10mm × 6mm的尺寸後使用乾磨方式研磨試片表面至P2000號砂紙。
    試片於前處理完成後,將純鋁試片置於610℃持温25小時以及鋁-1.2矽置於570℃持温25小時以生成熱合氧化膜。生長完熱合氧化膜的試片分別與純鋁、鋁-7.6矽試塊進行三明治試片融合20分鐘,待爐冷至室溫後觀察融合後試片介面。
    在純鋁/純鋁氧化膜/純鋁試片融合後的介面上可觀察到的不同的凹孔,其中曲率半徑最大可達14.82μm,接觸角為164.7°。於鋁-7.6矽/純鋁氧化膜/純鋁三明治融合試片介面觀察到凹孔的最大曲率半徑為7.89μm,但是接觸角卻有約20°的變動範圍,由於試片內的矽會在高溫時與氧化膜及鋁液反應生成矽或氧化矽,介面上的氣袋在成長時受其影響造成氣袋受力的動態不平衡而形成微氣泡脫離介面上浮,因此使得相同曲率半徑的氣袋可能產生接觸角達20°的變化範圍。鋁-1.2矽所生長的氧化膜結構鬆散且不具微通道,氧化膜在三明治試片融合時容易分解,形成氣袋附著氧化膜顆粒而懸浮於熔液中。
    純鋁/純鋁氧化膜/純鋁融合試片會於氧化膜介面上形成氣袋;而純鋁/鋁-1.2矽氧化膜/鋁-1.2矽三明治融合試片會形成微氣孔懸浮於熔並殘留在凝固後的試片中。


    The present study investigated the influence of hydrogen and thermally-formed oxide layer on the foundation of air pocket and micro-bubble. High purity aluminum (99.999 wt.%) and Al-XSi alloy (X=1.2 wt% and 7.6 wt%) were used in this study.
    The cube samples were prepared in size 10 mm × 10 mm × 6 mm and polished by P400 to P2000 abrasive papers. These cube samples were moved to the muffle furnace and then heated to 610℃ and 570℃ for pure aluminum and aluminum-silicon alloys, respectively. Two different cube were heated for 25 hrs to develop thermally-formed oxide film.
    After sandwich samples(Al/oxide film/Al, Al-7.6Si/ oxide film/Al, Al/oxide film/Al-1.2Si) were fused in the muffle furnace, the sample were sectioned to observe the air pocket on the interface of fusion. The radius of curvature and contact angle of air-pore on the interface were increased.
    The maximum contact angle and curvature of radius for air pocket in the pure aluminum sandwich specimen interface was 164.7° and 14.82μm. From SEM observation, no micro-bubble has been trapped in the top cube sample. Silicon changed the surface tension of liquid aluminum and the wetting condition between liquid aluminum and oxide film, the maximum curvature of radius were reduced to 7.89μm and the variation of contact angle was about 20° , from 143° to 164°. Micro-bubble trapped in the top sample has been observed.
    The structure of Al-1.2Si thermally-formed oxide layer was loose. The sandwich sample show no(or few) apparent air-pocket on the interface of fusion. However, micro-bubble along with inclusion has been observed in the cube sample.

    第一章 前言-------------------------------------------------------------------1 第二章 文獻回顧---------------------------------------------------------------2 2.1 鋁合金的簡述------------------------------------------------------------2 2.1.1 鋁合金的類型--------------------------------------------------------2 2.1.2 鑄造用鋁合金的分類--------------------------------------------------2 2.1.3 純鋁(1XX.X)-------------------------------------------------------------3 2.1.4 影響鎔湯表面張力的元素--------------------------------------------------3 2.2 氧化鋁的生成------------------------------------------------------------3 2.2.1 氧化鋁的種類--------------------------------------------------------3 2.2.2 氧化鋁的形成--------------------------------------------------------5 2.2.3 化學分析電子儀(ESCA)診斷氧化鋁--------------------------------------7 2.3 表面張力----------------------------------------------------------------7 2.3.1 表面張力的原由------------------------------------------------------8 2.3.2 表面張力的測定------------------------------------------------------8 2.3.3 接觸角--------------------------------------------------------------9 2.4 鋁及其合金與氧化膜潤濕狀況---------------------------------------------10 2.4.1 影響鋁液表面張力的因素---------------------------------------------10 2.4.2 影響鋁液與氧化膜間潤濕的因素---------------------------------------11 2.5 氣體分子與於液體內的成核-----------------------------------------------12 2.5.1 氣泡成核的方式-----------------------------------------------------12 2.5.2 氣泡成生長的過程---------------------------------------------------12 第三章 實驗方法與步驟--------------------------------------------------------14 3.1 實驗目的---------------------------------------------------------------14 3.2 實驗材料---------------------------------------------------------------14 3.2.1 純鋁材料-----------------------------------------------------------14 3.2.2 鋁矽材料-----------------------------------------------------------14 3.3 試片規格---------------------------------------------------------------14 3.4 實驗設備-----------------------------------------------------------------14 3.5 實驗步驟---------------------------------------------------------------15 3.5.1 鋁矽合金固溶處裡---------------------------------------------------15 3.5.2 氧化膜生長---------------------------------------------------------15 3.5.3 介面凹孔尺寸界定---------------------------------------------------16 第四章 結果與討論------------------------------------------------------------17 4.1 純鋁(99.999wt%)氧化膜 -------------------------------------------------17 4.1.1 試片處理-----------------------------------------------------------17 4.1.2 掃描式電子顯微鏡(SEM)的觀察----------------------------------------18 4.1.3 化學分析電子儀(ESCA)的檢測 ----------------------------------------19 4.2純鋁氧化膜之三明治試片(純鋁/純鋁氧化膜/純鋁)介面凹孔觀察----------------19 4.2.1 三明治試片的融合---------------------------------------------------20 4.2.2 純鋁試片氫的來源與擴散---------------------------------------------20 4.2.3介面上凹孔的生長、合併與上浮----------------------------------------22 4.2.4純鋁三明治上部試片破斷面SEM的觀察-----------------------------------25 4.2.5 綜論---------------------------------------------------------------26 4.3鋁矽合金(Al-7.6Si)------------------------------------------------------26 4.3.1 試片處理-----------------------------------------------------------26 4.3.2鋁矽合金三明治試片(Al-7.6Si/純鋁熱合氧化膜/純鋁)融合----------------26 4.3.3三明治試片介面凹孔觀察----------------------------------------------27 4.3.4三明治試片介面上凹孔的成核、生長與上浮------------------------------27 4.3.5三明治試片之上部試片(Al-7.6Si)扳斷面SEM觀察-------------------------29 4.3.6綜論----------------------------------------------------------------30 4.4鋁矽合金(Al-1.2Si)------------------------------------------------------30 4.4.1試片處理------------------------------------------------------------30 4.4.2鋁矽合金(Al-1.2Si)熱合氧化膜之SEM觀察-------------------------------31 4.4.3三明治(純鋁/鋁矽熱合氧化膜/Al-1.2Si)試片融合------------------------32 4.4.4三明治試片介面與內部之SEM與OM觀察-----------------------------------32 4.4.5綜論 -----------------------------------------------------------------33 第五章 結論------------------------------------------------------------------35 參考文獻-------------------------------------------------------------------- 36

    1.D. E. J. Talbot, “Effect of Hydrogen in Aluminum, Magnesium, Copper, and
    Their Alloys”, International Metallurgical Reviews, 20(1975), 166-184.
    2.R. A. Robie, B. S. Hemingway, J. R. Fisher, “Thermodynamics Properties of
    Minerals and Related Substances at 298.15K and 1 Bar (105 Pascal) Pressure
    and at Higher Temperature”, U.S. Government Printing Office, Washington,
    1978, p137-248.
    3.I. J. Polmear, Light Alloys:Metallurgy of the Light Metals, 3rd ed., John
    Wiley & Sons, New York, 1995.
    4.C. R. Loper, Jr., “Fluidity of Aluminum-Silicon Casting Alloys, AFS
    Transactions”, 100 (1992), 533-538.
    5.P. S. Santos, H. S. Santos, S. P. Toledo, “Standard Transition Aluminas.
    Electron Microscopy Studies”, Materials Research, 3 (2000) , 104-114.
    6.S. W. Whangbo, Y. K. Choi, W. S. Koh, K. B. Chung, H. K. Jang, C. N. Whang,
    “Effect of Silicon Surface States on the Properties of Epitaxial Al2O3
    Films”, Thin Solid Films, 398-399 (2001), 480-484.
    7.L. D. Hart, Esther Lense, Alumina Chemicals:Science and Technology
    Handbook, American Ceramic Society, Westerville, Ohio, 1990, p.32, 50
    8.William D. Callister, Jr., Materials Science and Engineering:An
    Introduction, 4th ed, John Wiley & Sons, New York, 1997, p.38.
    9.M. R. Alexander, G. E. Thompson, G. Beamson, “Characterization of the
    Oxide/Hydroxide Surface of Aluminum Using X-ray Photoelectron Spectroscopy:
    A Procedure for Curve Fitting the O 1s Core Level”, Surface and Interface
    Analysis, 29 (2000), 468-477.
    10.林敬二、楊美惠、楊寶旺、廖德章、薛敬和,英.中.日 化學大辭典,高立圖書有限
    公司,台北,2000,p.70、380、927、1364
    11.W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, 2nd
    ed, Wiley, New York, 1976, p.64, 65.
    12.I. Levin, D. Brandon, “Metastable Alumina Polymorphs:Crystal Structures
    and Transition Sequences”, Journal of the American Ceramic Society, 81
    (1998), 1995-2012.
    13.宋啟瑞,在鋁上成長堰層陽極氧化膜的研究,國立交通大學材料科學與工程研究所碩士
    班論文,新竹,民國九二年七月
    14.Per Kofstad, High Temperature Oxidation of Metals, John Wiley & Sons, New
    York, 1966.
    15.徐東明,熱成長氧化膜防治S44660不銹鋼氫脆之研究,國立中興大學材料工程學研究所
    碩士班論文,台中,民國八八年七月
    16.P. E. Doherty, R.S. Davis, “Direct Observation of the Oxidation of
    Aluminum Single-Crystal Surfaces”, Journal of Applied Physics, 34 (1963),
    619-628.
    17.P. E. Doherty, R.S. Davis, “The Formation of Surface Pits by the
    Condensation of Vacancies”, Acta Metallurgica, 7(1959), 118-123.
    18.L. P. H. Jeurgens, W. G. Sloof, F. D. Tichelaar, E. J. Mittemeijer,
    “Composition and Chemical State of the Ions of Aluminium-Oxide Films Formed
    by Thermal Oxidation of Aluminum”, Surface Science, 506(2002), 313-332.
    19.P. C. Snijders, L. P. H. Jeurgens, W. G. Sloof, “Structure of Thin
    Aluminium-Oxide Films Determined From Valence Band Spectra Measured Using
    XPS”, Surface Science, 496(2002), 97-109.
    20.O. Salas, H. Ni, V. Jayaram, K. C. Vlach, C. G. Levi, R. Mehrabian,
    “Nucleation and Growth of Al2O3/metal Composites by Oxidation of Aluminum
    Alloys”, Journal of Materials Research, 6(1991), 1964-1981.
    21.S. W. Whangbo, Y. K. Choi, H. K. Jang, Y. D. Chung, I. W. Lyo, C. N. Wang,
    “Effect of Oxidized Al Prelayer for the Growth of Polycrystalline Al2O3
    Films on Si Using Ionized Beam Deposition”, Thin Solid Films, 388(2001),
    290-294.
    22.J. F. Moulder, W. F. Stickle, P. E. Sobal, K. D. Bomben, Handbook of X-ray
    Photoelectron Spectroscopy, Physics Electronics, Inc., Minnesota USA, 1992
    p.213-239.
    23.Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, Fundamentals of
    Fluid Mechanics, John Wiley & Sons, Ioc. Canada, p.26.
    24.Paul Joes, Dynamic Surface Phenomena, VSP BV, Netherlands, p.2.
    25.Aniello Mennella and Norman R. Morrow, “Point-by-Point Method of
    Determining Contact Angles from Dynamic Wilhelmy Plate Data for
    Oil/Brine/Solid Systems”, Journal of Colloid and Interface Science, 172
    (1995), 48-55.
    26.Sherril D. Christian, Andrew R. Slagle, Edwin E. Tucker, John F. Scamehorn,
    “ Inverted Vertical Pull Surface Tension Method”, Langmuir, 14(1998), 3126-
    3128.
    27.S. H. Anastasiadis, J.-K. Chen, J. T. Koberstein, A. F. Siehel, J. E. Sohn,
    J. A. Eerson, “The Determination of Interfacial Tension by Video Image
    Processing
    of Pendant Fluid Drops”, Journal of Colloid and Interface Science, 119
    (1987), 55-66.
    28.Howard H. Hu and Daniel D. Joseph, “Evolution of a Liquid Drop in a
    Spinning Drop Tensiometer”, Journal of Colloid and Interface Science, 162
    (1994), 331-339.
    29.V. I. Kovalchuk, S. S. Dukhin, “Dynamic effects in maximum bubble pressure
    experiments”, Colloids and Surfaces A: Physicochemical and Engineering
    Aspects,192(2001), 131-155.
    30.Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito,“Effects of
    surface roughness on wettability”, Acta Metallurgica, 46(1998), 2313-2318.
    31.Abraham Marmur, “Contact-angle hysteresis on heterogeneous smooth surface:
    theoretical comparison of the captive bubble and drop method” Colloids And
    Surfaces A, 136(1998), 209-215.
    32.J.P. Anson, R.A.L. Drew, J.E.Gruzleski, “The Surface Tension of Molten
    Aluminum and Al-Si-Mg Alloy Under Vacuum and Hydrogen Atmospheres”,
    Metallurgical and Materials Transactions B, 30(1999), 1027-1032.
    33.Ping Shen, Hidetoshi Fujii, Taihei Matsumoto, Kiyoshi Nogi ,”Critical
    Factors Affecting the Wettability of α-Alumina by Molten Aluminum”, Journal
    of the American Ceramic Society, 87(2004), 2151-2159.
    34.V. Sarou-Kanian, F. Millot, J. C. Rifflet,” Surface Tension and Density of
    Oxygen-Free Liquid Aluminum at High Temperature”, International Journal of
    Thermophysics, 24(2003), 277-286.
    35.Hsien-Nan Ho, Shinn-Tyan Wu, “The Wettability of Molten Aluminum on
    Sintered Aluminum Nitride Substrate”, Materials Science & Engineering A, 248
    (1998), 120-124.
    36.John Campball, Castings, ELSEVIER, United Kingdom, 2003, p.169.
    37.A.V. Byakova, S.V. Gnyloskurenko, T. Nakamura, O.I. Raychenko, “Influence
    of Wetting Condition on Bubble Formation at Orifice in an Inviscid Liquid
    Mechanism of Bubble Evolution”, Colloids and Surface A, 229(2003), 19-32.
    38.S.V. Gnyolskurenko, A.V. Byakova, O.I. Raychenko, T. Nakamura, ”Influence
    of Wetting Conditions on Bubble Formation at Orifice in an Inviscid Liquid.
    Transformation of bubble Shape and Size”, Colloids and Surface A, 218
    (2003), 73-87.
    39.Robert E. Read-Hill, Reza Abbaschian, Physical Metallurgy Principle, PWS
    Publishing Company, USA, p.497.
    40.Teng-Shih Shih and Zin-Bou Liu, ”Thermally-Formed Oxide on Aluminum and
    Magnesium”, Materials Transactions, 47(2006), 1347-1353.
    41.John Campball, Castings, ELSEVIER, United Kingdom, 2003, p.11.
    42.D.E.J Talbot, “Effects of hydrogen in aluminum, magnesium, copper and
    their alloys”, International Metallurgical Review, 20(1975), 166-184.
    43.John Campball, Castings, ELSEVIER, United Kingdom, 2003, p.3.
    44.Teng-Shih Shih and In-Chan Chen, “Decomposition and Reaction of Thermal-
    Formed Alumina in Aluminum Alloy Castings”, Materials Transactions, 46
    (2005) , 1868-1876.
    45.Tailian Chen, J.N. Chung, “Coalescence of bubbles in nucleate boiling on
    micro-heaters”, International Journal of Heat and Mass Transfer, 45(2002),
    2329-2341.

    QR CODE
    :::