| 研究生: |
黃正宏 Cheng-Hung Huang |
|---|---|
| 論文名稱: |
嗜酸熱硫化葉菌中DNA結合蛋白Sac10b之結構分析及其與DNA相互作用 Crystal structure of DNA binding protein Sac10b from Sulfolobus acidocaldarius and its interaction with DNA |
| 指導教授: |
陳青諭
Chin-Yu Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 嗜酸熱硫化葉菌 、DNA結合蛋白 、X光繞射 、蛋白質結晶學 |
| 外文關鍵詞: | Sulfolobus acidocaldarius, DNA-binding protein, X-ray crystallography, crystal structure |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在生物體中有一負責結合與調節遺傳物質的重要蛋白,稱之為DNA結合蛋白,顧名思義,它會透過不同方式與DNA結合,像是橋接、彎曲或纏繞。組蛋白是真核生物中常見的DNA結合蛋白,它以纏繞的方式包裹著DNA使DNA組織成緊密結實的染色質構造;與真核生物不同,古生菌沒有組蛋白而是利用各種小的類核蛋白,通過橋接或彎曲DNA分子的方式來組織基因組,Sac10b就是在古生菌中高度保守的核酸結合蛋白。本實驗中,使用各種方式更深入研究Sac10b蛋白質,從分析型超高速離心和圓二色譜分析結果顯示,兩種蛋白質Sac10b1、Sac10b2在溶液中均以熱穩定和耐酸的二聚體形式存在;從得到2.05-Å和1.70-Å解析度的Sac10b1、Sac10b2晶體結構中,分析出Sac10b1二聚體是以R58和F59為中心與另二聚體產生交互作用,再透過電子顯微鏡觀察,Sac10b1與DNA產生了協同結合形成一個完全橋接複合物,而Sac10b2卻無法和DNA形成完全橋接,可能就是缺少F59胺基酸。為了進一步證實R58和F59胺基酸的作用,從電子顯微鏡影像來看三個Sac10b1突變R58A、F59A和R58A/F59A與DNA作用,結果與Sac10b2相似,沒有觀察到與Sac10b1相同的協同結合完全橋接的行為。因此可以證實Sac10b透過橋接作用來組織DNA,R58和F59更是扮演關鍵角色的胺基酸。
Abstract
DNA-binding proteins that compact and regulate genetic materials are crucial in all organisms. Eukaryotic nuclear DNA is generally wrapped by histones into nucleosomes. Likewise, thermoacidophilic archaea utilize a variety of small nucleoid-associated proteins to organize the genome predominantly by bridging or bending the DNA molecule. Sac10b is a highly conserved nucleic acid-binding protein in archaea. Here we present two crystal structures of Sac10b1 and Sac10b2 from Sulfolobus acidocaldarius at 2.05-Å and 1.70-Å resolution, respectively. Each protein adopts a mixed α/β-fold with an extended β3-β4 hairpin. Analytical ultracentrifuge and circular dichroism results show that both proteins exist as thermal stable and acid tolerant dimers in solution. Electron microscopic images indicate that Sac10b1 and Sac10b2 can form condensed protein-DNA complexes by multiple bridged patches to different extents. Crystal packing analysis suggests that the dimer-dimer interactions, which involve the conservation of the interface residues, centered on R58 and F59 of Sac10b1, may account for the cooperative binding to DNA. The result is a completely bridged Sac10b1-DNA complex, which does not occur with the Sac10b2 homodimer due to the lack of an F59-equivalent residue. To further confirm the role of R58 and F59 residues, the EM images show that three Sac10b1 mutants R58A, F59A and R58A/F59A, similar to Sac10b2, result in the formation of intra-molecular bridging complexes but do not exhibit the cooperative binding behavior as Sac10b1, as no completely bridged DNA molecules were observed. A functional role for Sac10b in the organization and stabilization of chromosomal DNA through bridging interactions is suggested.
1.Yip, W. S. V., Vincent, N. G. & Baserga, S. J. Ribonucleoproteins in archaeal pre-rRNA processing and modification. Archaea 2013, 614735 (2013).
2.Chen, L. et al. The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota. J. Bacteriol.187, 4992–4999 (2005).
3.Driessen, R. P. C. & Dame, R. T. Nucleoid-associated proteins in Crenarchaea. Biochem. Soc. Trans. 39, 116–121 (2011).
4.White, M. F. & Bell, S. D. Holding it together: chromatin in the Archaea. Trends Genet. 18, 621–626 (2002).
5.Sandman, K. & Reeve, J. N. Archaeal chromatin proteins: different structures but common function? Curr. Opin. Microbiol. 8, 656–61 (2005).
6.Goyal, M., Banerjee, C., Nag, S. & Bandyopadhyay, U. The Alba protein family: Structure and function. Biochim. Biophys. Acta 1864, 570–583 (2016).
7.Green, G. R., Searcy, D. G. & DeLange, R. J. Histone-like protein in the Archaebacterium Sulfolobus acidocaldarius. BBA - Gene Struct. Expr. 741, 251–257 (1983).
8.Grote, M., Dijk, J. & Reinhardt, R. Ribosomal and DNA binding proteins of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta - Protein Struct. Mol. Enzymol. 873, 405–413 (1986).
9.Lurz, R., Grote, M., Dijk, J., Reinhardt, R. & Dobrinski, B. Electron microscopic study of DNA complexes with proteins from the Archaebacterium Sulfolobus acidocaldarius. EMBO J. 5, 3715–3721 (1986).
10.Wardleworth, B. N., Russell, R. J. M., Bell, S. D., Taylor, G. L. & White, M. F. Structure of Alba: an archaeal chromatin protein modulated by acetylation. EMBO J. 21, 4654–4662 (2002).
11.Jelinska, C. et al. Obligate heterodimerization of the archaeal Alba2 protein with Alba1 provides a mechanism for control of DNA packaging. Structure 13, 963–971 (2005).
12.Xue, H., Guo, R. & Huang, L. An Abundant DNA Binding Protein from the Hyperthermophilic Archaeon. J. Bacteriol. 182, 3929–3933 (2000).
13.Guo, R., Xue, H. & Huang, L. Ssh10b, a conserved thermophilic archaeal protein, binds RNA in vivo. Mol. Microbiol. 50, 1605–1615 (2003).
14.Cui, Q. et al. Two conformations of archaeal Ssh10b: The origin of its temperature-dependent interaction with DNA. J. Biol. Chem. 278, 51015–51022 (2003).
15.Tanaka, T., Padavattan, S. & Kumarevel, T. Crystal structure of archaeal chromatin protein alba2-double-stranded DNA complex from Aeropyrum pernix K1. J. Biol. Chem. 287, 10394–10402 (2012).
16.Kumarevel, T. et al. Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrum pernix K1. Proteins Struct. Funct. Genet. 71, 1156–1162 (2008).
17.Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, 320–324 (2014).
18.Biyani, K. et al. Solution structure, stability, and nucleic acid binding of the hyperthermophile protein Sso10b2. Biochemistry 44, 14217–30 (2005).
19.Guo, L. et al. Biochemical and structural insights into RNA binding by Ssh10b, a member of the highly conserved Sac10b protein family in Archaea. J. Biol. Chem. 289, 1478–1490 (2014).
20.Chou, C. C., Lin, T. W., Chen, C. Y. & Wang, A. H. J. Crystal structure of the hyperthermophilic archaeal DNA-binding protein Sso10b2 at a resolution of 1.85 Angstroms. J. Bacteriol. 185, 4066–4073 (2003).
21.Kumarevel, T. et al. Crystal structure of an archaeal specific DNA-binding protein (Ape10b2) from Aeropyrum pernix K1. Proteins Struct. Funct. Genet. 71, 1156–1162 (2008).
22.Wang, G. et al. Crystal structure of a DNA binding protein from the hyperthermophilic euryarchaeon Methanococcus jannaschii. Protein Sci. 12, 2815–2822 (2003).
23.Zhao, K., Chai, X. & Marmorstein, R. Structure of a Sir2 substrate, Alba, reveals a mechanism for deacetylation-induced enhancement of DNA binding. J. Biol. Chem. 278, 26071–26077 (2003).
24.Hada, K. et al. Crystal structure and functional analysis of an archaeal chromatin protein Alba from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biosci. Biotechnol. Biochem. 72, 749–758 (2008).
25.Liu, Y. F. et al. Molecular mechanism underlying the interaction of typical Sac10b family proteins with DNA. PLoS One 7, e34986 (2012).
26.Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. in Methods in Enzymology vol. 276 307–326 (Academic Press, 1997).
27.Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235–242 (2011).
28.Griffith, J. D. & Christiansen, G. Electron microscope visualization of chromatin and other DNA-protein complexes. Annu. Rev. Biophys. Bioeng. 7, 19–35 (1978).
29.Xuan, J. & Feng, Y. The archaeal Sac10b protein family: conserved proteins with divergent functions. Curr. Protein Pept. Sci. 13, 258–266 (2012).
30.Karshikoff, A. & Ladenstein, R. Ion pairs and the thermotolerance of proteins from hyperthermophiles: A ‘traffic rule’ for hot roads. Trends Biochem. Sci. 26, 550–556 (2001).
31.Ge, M., Xia, X. Y. & Pan, X. M. Salt bridges in the hyperthermophilic protein Ssh10b are resilient to temperature increases. J. Biol. Chem. 283, 31690–31696 (2008).
32.Szilágyi, A. & Závodszky, P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure 8, 493–504 (2000).
33.Barlow, D. J. & Thornton, J. M. Ion-pairs in proteins. J. Mol. Biol. 168, 867–885 (1983).
34.Decanniere, K.; Babu, A. M.; Sandman, K.; Reeve, J. N.; Heinemann, U. Crystal Structures of Recombinant Histones HMfA and HMfB from the Hyperthermophilic Archaeon Methanothermus Fervidus11Edited by K. Nagai. J. Mol. Biol. 303, 35–47 (2000).
35.Luijsterburg, M. S., White, M. F., Driel, R. van & Dame, R. T. The Major Architects of Chromatin: Architectural Proteins in Bacteria, Archaea and Eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418 (2008).