跳到主要內容

簡易檢索 / 詳目顯示

研究生: 涂譽馨
Yu-Hsin Tu
論文名稱: 利用表面電漿共振增強 Goos-Hänchen 位 移現象量測折射率變化
Measurement of Refractive Index Variation by Using Enhanced Goos-Hänchen Shift Based on Surface Plasmon Resonance
指導教授: 郭倩丞
Chien-Cheng Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 83
中文關鍵詞: 表面電漿共振Goos-Hänchen 效應
外文關鍵詞: Goos-Hänchen effect, Kretschmann Configuration, Kaisa
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用表面電漿共振 (Surface Plasmon Resonance, SPR) 能夠增
    強 Goos-Hänchen 效應 (Goos-Hänchen Effect, GH Effect) 的能力,結
    合其本身多年來於生物樣本檢測領域的應用,以偏振光學、GoosHänchen 效應、表面電漿共振以及干涉光學的理論為基礎重新設計實
    驗,並且重新定義一物理量 Kaisa 作為新的檢測依據。
    實驗設計中,將一道擁有兩個偏振模態 (TE and TM Mode) 的雷
    射光束導入 Kretschmann Configuration,原入射雷射光由於表面電漿
    共振 (Surface Plasmon Resonance, SPR) 對於兩偏振態會造成不同程
    度的 Goos-Hänchen 效應的位移現象,在雷射光離開 Kretschmann
    Configuration 時,原入射光由原先兩個偏振模態正交的一道雷射光一
    分為二,形成兩道偏振模態正交的雷射光束,且兩道雷射光束間部分
    面 積 重 合 。 並 且 在 Kretschmann Configuration 後放置 GlanThompson Polarizer 使 TE 偏振模態和 TM 偏振模態分別單獨通過,
    以及兩偏振模態同時通過,使其兩於同方向量上產生分量進行干涉。
    最終由偵測器量測 TE 偏振模態和 TM 偏振模態的反射光吸收光
    譜以及干涉後干涉項的光強。而 Kaisa 即為干涉項的光強除以兩倍
    的 TE 偏振模態和 TM 偏振模態的反射光強相乘的開根號。
    經由理論模擬後計算後,原先作為檢測依據的 TM 偏振模態的
    iii
    反射光強的品質因數 (Figure of Merits, FoM) 為 37.12,而 Kaisa 的
    品質因數則為 114.67,相較原檢測依據的品質因數提升了 3.09 倍。
    實際實驗量測中,以蔗糖水溶液作為量測樣本,樣本濃度分別為 0%、
    1.25%、2.5%、5%以及 10%,其對應折射率為 1.33299、1.33478、1.33659、
    1.34026 以及 1.34783。而此實驗架構量測折射率變化的檢測極限
    (Limit of Detection, LoD) 可達 1.05 × 10−3
    RIU (Refractive Index
    Unit)。


    This work adopted the concept of Goos-Hänchen effect into the Surface
    Plasmon Resonance biosensor. The experimental design is based on the
    theory of the Polarization of Light, Goos-Hänchen effect, Surface Plasmon
    Resonance and Interferometry. And a new parameter, Kaisa, is introduced
    and defined.
    In the experimental design, a laser beam with both TE and TM
    polarization mode serves as the incident light source arriving at the
    Kretschmann Configuration. Since the Surface Plasmon Resonance
    introduce different Goos-Hänchen shifts to the laser beam with TE and TM
    polarization mode, the incident laser beam is split into two beams with TE
    and TM polarization mode respectively. Moreover, there is a slight spatial
    shift between them. After the Krestchmann Configuration a GlanThompson Polarizer is placed to allow only the beam with TE or TM
    polarization mode to pass, and create the component on the same direction
    for both beam to interfere with each other. At last the detector will measure
    the power of the beam with TE and TM polarization mode respectively and
    the power of the interference term. The new parameter, Kaisa, is then
    defined as the power of the interference term divided by two times of the
    square value of the product of the power of the beam of TE and TM
    polarization mode.
    According to the theoretical calculation and simulation, the Figure of
    Merit (FoM) of the power of the beam with TM polarization mode, which
    is commonly used as the parameter for Surface Plasmon Resonance
    biosensor testing is 37.12, meanwhile, the FoM of Kaisa is 114.67,
    v
    indicating increasing the resolution of the biosensor by 3.09 times. In
    practice, the sucrose solutions are selected as the testing sample, with the
    concentration of 0%, 1.25%, 2.5%, 5% and 10%, and the corresponding
    refractive index will be 1.33299, 1.33478, 1.33659, 1.34026 and 1.34783
    respectively. The Limit of Detection (LoD) of the system is able to reach
    1.05 × 10−3 RIU (Refractive Index Unit).

    摘要 ii Abstract iv Table of Contents viii List of Figures x List of Tables xii Chapter 1 Motivation and Introduction 1 1.1 Motivation 1 1.2 Review of Biosensors 2 1.3 Outline Statement 5 Chapter 2 Theory 7 2.1 Goos–Hänchen Effect 7 2.1.1 Total Internal Reflection 7 2.1.2 Evanescent Wave 8 2.1.3 Approximate Theory for Goos–Hänchen Shift 10 2.2 Surface Plasmon Resonance 22 Chapter 3 Theoretical Approach and Experimental Setup 28 3.1 Theoretical Approach 28 3.2 Experimental Design and Setup 30 3.2.1 Experimental Design 30 3.2.2 Experimental Setup 35 3.3 Simulation Results and Analytical Method 37 3.3.1 Simulation Results 37 3.3.2 Analytical Method 43 Chapter 4 Results and Discussions 46 4.1 Results 46 4.2 Discussions 49 4-3 Correction for the Figure of Merit of Kaisa 61 4-4 Conclusion 62 Chapter 5 Future Work 63 Reference 66

    1. F. Goos, and H. J. A. d. P. Hänchen, "Ein neuer und fundamentaler Versuch zur Totalreflexion," 436, 333-346 (1947).
    2. F. Goos, and H. J. A. d. P. Lindberg‐Hänchen, "Neumessung des strahlversetzungseffektes bei totalreflexion," 440, 251-252 (1949).
    3. I. J. R. S. o. L. Newton, "1704. Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light."
    4. K. J. A. d. P. Artmann, "Berechnung der Seitenversetzung des totalreflektierten Strahles," 437, 87-102 (1948).
    5. R. H. J. J. Renard, "Total reflection: a new evaluation of the Goos–Hänchen shift," 54, 1190-1197 (1964).
    6. B. Liedberg, C. Nylander, I. J. B. Lundström, and Bioelectronics, "Biosensing with surface plasmon resonance—how it all started," 10, i-ix (1995).
    7. H. Im, A. Lesuffleur, N. C. Lindquist, and S.-H. J. A. c. Oh, "Plasmonic nanoholes in a multichannel microarray format for parallel kinetic assays and differential sensing," 81, 2854-2859 (2009).
    8. I. Alves, C. Park, V. J. J. C. P. Hruby, and P. Science, "Plasmon resonance methods in GPCR signaling and other membrane events," 6, 293-312 (2005).
    9. P. J. S. Singh, and a. B. Chemical, "SPR biosensors: historical perspectives and current challenges," 229, 110-130 (2016).
    10. S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. J. A. Meunier, "Combined surface plasmon resonance and impedance spectroscopy systems for biosensing," 139, 596-602 (2013).
    11. T. Viitala, N. Granqvist, S. Hallila, M. Raviña, and M. J. P. o. Yliperttula, "Elucidating the signal responses of multi-parametric surface plasmon resonance living cell sensing: a comparison between optical modeling and drug–MDCKII cell interaction measurements," 8, e72192 (2013).
    12. S.-P. Ng, C.-M. L. Wu, S.-Y. Wu, H.-P. Ho, S. J. B. Kong, and Bioelectronics, "Differential spectral phase interferometry for wide dynamic range surface plasmon resonance biosensing," 26, 1593-1598 (2010).
    13. W. DiPippo, B. J. Lee, and K. J. O. e. Park, "Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range," 18, 19396-19406 (2010).
    14. C. Caucheteur, V. Voisin, and J. J. O. e. Albert, "Near-infrared grating-assisted SPR optical fiber sensors: design rules for ultimate refractometric sensitivity," 23, 2918-2932 (2015).
    15. E. E. J. P. R. Hall, "The penetration of totally reflected light into the rarer medium," 15, 73 (1902).
    16. J. Picht, Zur Theorie der Totalreflexion (Akademie-Verlag, 1956).
    17. C. V. J. A. d. P. Fragstein, "Zur Seitenversetzung des totalreflektierten Lichtstrahles.(Mit 3 Abbildungen)," 439, 271-278 (1949).
    18. C. Schaefer, and R. J. A. d. P. Pich, "Ein Beitrag zur Theorie der Totalreflexion," 422, 245-266 (1937).
    19. H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings(Springer, 1988), pp. 4-39.
    20. J. D. Jackson, "Classical electrodynamics," (AAPT, 1999).
    21. D. R. Corson, P. Lorrain, and F. J. A. J. o. P. Van Name Jr, "Introduction to electromagnetic fields and waves," 31, 556-556 (1963).
    22. X. Yang, D. Liu, and W. Xie, "High-sensitivity optical sensor based on surface plasmon resonance enhanced Goos-Hänchen shift," in 2006 Conference on Optoelectronic and Microelectronic Materials and Devices(IEEE2006), pp. 74-77.
    23. A. J. Z. N. P. Alzheimer, "Uber eine eigenartige Erkrankung der Hirnrinde," 18, 177-179 (1907).
    24. A. J. A. D. A. D. Alzheimer, "About a peculiar disease of the cerebral cortex," 1, 8 (1987).
    25. K. Maurer, and U. Maurer, Alzheimer: The Life of a Physician and the Career of a Disease (Columbia University Press, 2003).
    26. A. Burns, and S. J. B. B. m. j. Iliffe, "Alzheimer's disease," 338, 467-471 (2009).
    27. W. H. Organization, "Dementia. Fact sheet, Updated December 2017," (2017).
    28. P. D. Meek, E. K. McKeithan, G. T. J. P. T. J. o. H. P. Schumock, and D. Therapy, "Economic considerations in Alzheimer's disease," 18, 68-73 (1998).
    29. A. Wimo, L. Jonsson, B. J. D. Winblad, and g. c. disorders, "An estimate of the worldwide prevalence and direct costs of dementia in 2003," 21, 175-181 (2006).
    30. D. Hsu, and G. J. C. A. R. A Marshall, "Primary and secondary prevention trials in Alzheimer disease: looking back, moving forward," 14, 426-440 (2017).
    31. M. S. Chong, and S. J. T. L. N. Sahadevan, "Preclinical Alzheimer's disease: diagnosis and prediction of progression," 4, 576-579 (2005).
    32. N. Sharma, A. N. J. J. o. c. Singh, and d. r. JCDR, "Exploring biomarkers for Alzheimer’s disease," 10, KE01 (2016).
    33. O. Zanetti, S. Solerte, F. J. A. o. g. Cantoni, and geriatrics, "Life expectancy in Alzheimer's disease (AD)," 49, 237-243 (2009).
    34. P. Mölsä, R. Marttila, and U. J. A. n. s. Rinne, "Long‐term survival and predictors of mortality in Alzheimer's disease and multi‐infarct dementia," 91, 159-164 (1995).
    35. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, H. M. J. A. s. Arrighi, and dementia, "Forecasting the global burden of Alzheimer’s disease," 3, 186-191 (2007).

    QR CODE
    :::