| 研究生: |
葉品良 Ping-liang Yeh |
|---|---|
| 論文名稱: |
智慧型運動控制器 |
| 指導教授: |
董必正
Tung-pi Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 干擾觀測器 、基因演算法 、振動抑制 、低通濾波器 |
| 外文關鍵詞: | disturbance observer, low- pass filter, genetic algorithm, hunting suppression control |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本計畫主要針對馬達驅動之運動系統,使用干擾觀測器(Disturbance Observer)架構,該控制架構主要使用驅動器之扭矩迴路,再自行架設速度迴路之PI控制器,由馬達輸出之轉速作為DOB之輸入訊號,而DOB之架構為參考模型第一階的倒數,DOB所得之輸出扣除輸入之訊號再經由一個有增益值的積分器回授於輸入端補償,使馬達轉動達到預期之結果,其中選用Butter worth低通濾波器,濾除輸出轉速之不必要雜訊使得干擾觀測器在實驗平台上得到有效的結果。該控制方案可以減少由參考模型和未知的系統模型之間的差異所造成的不確定性與摩擦力。
另外提出一個消除系統由非線性因素所造成之自我激發振盪(hunting)之抑制控制架構與控制命令平滑化架構,自我激發振盪控制架構是用於速度迴路,並使用類神經演算法調整出該控制抑制架構Ks 、Ka值,使得振動抑制控制架構可以有效抑制此系統所造成的振盪,控制命令平滑化架構用於位置迴路,增加前饋參數使馬達輸出結果達到優化,再使用基因演算法調整前饋參數得到最佳化參數。
In this paper, the motion system with a motor drive using a disturbance observer is considered. The control architecture is mainly applied to the torque loop of the drive circuit. The signal of the motor speed is fed to the disturbance observer as an input signal. The disturbance observer consists of the inverse of a reference model. In addition, a Butterworth low-pass filter is used to filter out noise, so the disturbance observer can achieve effectively results in the experimental platform. This control scheme can reduce the effect due to friction and modeling uncertainty.
A hunting suppression framework to eliminate self-excited oscillation (hunting) of the control system is also proposed. A genetic algorithm is applied to adjust the values of control gains, so that optimal performance can be achieved.
[1]W. H. Yao, P. C. Tung, C.C. Fuh, F. C. Chou, “A robust uncertainty controller with system delaycompensation for an ILPMSM system with unknown system parameters,” IEEE Transactions onIndustrial Electronics, Vol. 58, pp. 4727-4735, 2011.
[2]D. Karnopp, “Computer simulation of stick-slip friction in mechanical dynamic systems,” J. DynamicSystems, Measurement and Control, Transactions of the ASME, vol.107, no.1, pp.100–103, Mar. 1985.
[3]B. Friedland and Y.-J. Park, “On adaptive friction compensation,” IEEE Trans. Autom. Control, vol.37,no.10, pp.1609–1612, Oct. 1992.
[4]B. Armstrong-H´elouvry, P. Dupont, and C. Canudas de Wit, “A survey of models, analysis tools andcompensation methods for the control of machines with friction,” Automatica, vol.30, no.7,pp.1083–1138, Jul. 1994.
[5]P. Herman, “Velocity controller with friction compensation,” IET Control Theory Appl., vol. 1, no. 1,Jan. 2007
[6]D. A. Haessig, Jr. and B. Friedland, “On the modeling and simulation of friction,” J. Dynamic Systems,Measurement and Control, Transactions of the ASME, vol.113, no.3, pp.354–362, Sep. 1991.
[7]C. Canudas de Wit, H. Olsson, K.J. A˙ stro¨m, and P. Lischinsky, “A newmodel for control of systemswith friction,” IEEE Trans. Autom. Control, vol.40, no.3, pp.419–425, Mar. 1995.
[8]C. M. Lin and H. Y. Li “A novel adaptive wavelet fuzzy cerebellar model articulation control systemdesign for voice coil motors,” IEEE Trans. Ind. Electron., vol. 59, no. 4, pp. 2024-2033 Apr. 2012.
[9]F. J. Lin, P. H. Chou, C. S. Chen and Y. S. Lin, “DSP-Based cross-coupled synchronous control for dual linear motors via intelligent complementary sliding mode control,” IEEE Trans. Ind. Electron., vol. 59,no. 2, pp.1061-1073, Feb. 2012.
[10]C. Hu, B. Yao and Q. Wang, “Global task coordinate frame-based contouring control oflinear-motor-driven biaxial systems with Accurate parameter estimations,” IEEE Trans. Ind. Electron.,vol. 58, no. 11, pp.5195-5205, Nov. 2011.
[11]B. K. Kim, W. K. Chung and K. Ohba, “Adaptive robust precision motion control of systems withunknown input dead_zones a case study with comparative experiments,” IEEE Trans. Ind. Electron., vol.58, no. 6, pp.2454-2464, Jun. 2011.
[12]F.J. Lin, L.T Teng, and Y.C. Hung, “Modified elman neural network controller with improved particleswarm optimization for linear synchronous motor drive,” IET Electr. Power Appl., vol. 2, no. 3, pp.201-214, 2008.
[13]F.J. Lin, J.C. Hwang, P.H. Chou, and Y.C. Hung, “FPGA-based intelligent-complementary sliding-mode control for PMLSM servo-drive system,” IEEE Trans. Power Electron., vol. 25, no. 10, pp.2573–2587, Oct. 2010.
[14]M.T. Emirler, B.A. Guvenc, L. Guvenc, “Communication disturbance observer approach to control of integral plant with time delay,” Asian Control Conference(ASCC)., pp.1-6, 2013.
[15]S. Dasgupta, S. Sadhu, T.K. Ghoshal, “Disturbance observer structure based internal model control for time delay systems, ”Annual Conference on Information Sciences and Systems(CISS)., pp.1-5, 2015.
[16]D. Kang, “Design of a disturbance observer for discrete-time linear systems, ” International Conference Control Automation and Systems(ICCAS).,pp.1381-1383,2014.
[17]J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991
[18]Y. Y. Zou(1996)‧交流伺服驅動系統簡介 ‧取自http://pemclab.cn.nctu.edu.tw/peclub/W3cnotes/cn03/
[19]王進德,類神經網路與模糊控制理論入門與應用,全華圖書股份有限公司,台北市,民國九十五年。
[20]W. H. Yao, P. C. Tung, C.C. Fuh, F. C. Chou, “Suppression of hunting in an ILPMSM driver system using hunting compensator ,” IEEE Transactions on Industrial Electronics, Vol. 60, no.7, pp.2586-2594,2013.