跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張袁瑞
Yuan-Jui Chang
論文名稱: 轉注成型充填過程巨微觀流交界面之數值模擬
Numerical Simulation of Resin Transfer Molding in Interface within Fiber Tows
指導教授: 洪勵吾
Lih-Wu Hourng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 79
中文關鍵詞: 擾動厚度有限擴散聚集滲透度布林克曼方程式蒙地卡羅法多孔性介質
外文關鍵詞: transition thickness, diffusion limited aggregation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要模擬定流率充填下,當樹脂流經纖維束時,由於滲透度的差異所造成的壓力梯度及流動面速度不同造成擾動厚度,並探討充填階段毛細位移對流動面之影響及入口壓力之變化。流體流經纖維束的過程可視為流經多孔性介質,本文以布林克曼方程式來描述流場巨觀流及微觀流交界面之流動情形,以簡單正交法產生隔點,並配合有限體積法及蒙地卡羅法來預測流動面下一個可能位移粒子及其位移方向。其模擬結果可顯示出纖維束滲透度比值不同與充填流量不同對充填過程中流動面變化有絕對性的影響,而入射壓力相對於不同物理參數亦呈現出不同的變化。


    In this study, the simulation was confined under a constant flow rate that past a prepared fiber mats. Due to the difference of pressure gradient and the velocity past a cylinder-like fiber bundle result in transition thickness.
    Based on the rheological phenomena of flow in porous media. Brinkman equation is applied throughout the macro- and micro- description of the flow field. A simulation that utilize Monte Carlo decision-making process on the random walk in a simple orthogonalize network model is well conducted. Results show that the permeability difference between fiber mats and fiber bundle are the major mechanism of void formation. The inlet pressure with different filling flow rate was also investigated.

    目 錄 摘要…………………………………………………………………1 英文摘要……………………………………………………………2 目錄…………………………………………………………………3 表目錄………………………………………………………………5 圖目錄………………………………………………………………6 符號說明……………………………………………………………8 第一章、緒論………………………………………………………10 1-1 前言…………………………………………………10 1-2 文獻回顧……………………………………………11 1-3 研究方向……………………………………………18 第二章、理論模式…………………………………………………19 2-1達西定律……………………………………………19 2-2布林克曼方程式……………………………………20 2-3滲透度………………………………………………21 2-4空孔度………………………………………………22 2-5有限擴散聚集………………………………………22 2-6微觀結構之物理模式………………………………22 2-7微觀結構之位移模式………………………………23 2-8流動粒子流動強度計算方式………………………25 2-9等效滲透深度………………………………………26 2-10無因次參數…………………………………………26 第三章、數值方法…………………………………………………29 3-1蒙地卡羅法 …………………………………………29 3-2網絡模型 ……………………………………………30 3-3機率取決方式 ………………………………………30 3-4程式計算流程………………………………………31 第四章、結果與討論………………………………………………33 4-1格點獨立性 …………………………………………33 4-2單一均勻滲透度之流場特性分析 …………………33 4-3不同滲透度之流場特性分析 ………………………34 第五章、結論………………………………………………………38 第六章、參考文獻…………………………………………………40 表……………………………………………………………………46 圖……………………………………………………………………47 表 目 錄 表號名 稱 頁碼 表(一)纖維蓆空孔度與滲透度對照表…………………46 圖 目 錄 圖號圖 名 頁碼 圖1.LENORMAND 之三相圖…………………………………47 圖2.纖維基材配置圖………………………………………48 圖3.樹脂為牛頓流體假設之合理性………………………49 圖4.邊界條件示意圖………………………………………50 圖5.有限擴散聚集(DLA)示意圖……………………51 圖6.毛細管狀態示意圖……………………………………52 圖7.流體接觸角界定準則示意圖…………………………53 圖8.多孔通道鏈結機構……………………………………54 圖9.網絡格子(lattice)與連絡通道示意圖………………55 圖10.整體流動強度示意圖…………………………………56 圖11.程式流程圖……………………………………………57 圖12.格點獨立性之格點數與相對流動面位置關係圖……58 圖13.單一均勻滲透度基材中,流動面隨時間變化圖……59 圖14.單一均勻滲透度之(a)壓力場 (b)速度場…………60 圖15.流量 5ml/s,k1/k2=4之速度分佈圖…………………61 圖16.流量 5ml/s,k1/k2=4 之壓力分佈圖………………62 圖17.885w/95之流體,流率為5 ml/s,k1/k2=27.5之流場 壓力分佈圖……………………………………………63 圖18.流量 5ml/s,k1/k2=4,time step為0.04秒流動面 分佈圖…………………………………………………64 圖19-1.k1/k2=4,不同流量下入口壓力隨時間變化圖………65 圖19-2.k1/k2=4,時間為0.18sec,不同流量下纖維束前壓力 隨高度變化圖…………………………………………66 圖20.k1/k2=4,不同流量下流動面分佈圖…………………67 圖21.流量 5ml/s ,不同滲透度比值下流動面分佈圖……68 圖22.流量 5ml/s,k1/k2=18 流動面分佈圖………………69 圖23-1.相同流量下不同滲透比值的入射壓力圖……………70 圖23-2.時間為0.18sec,相同流量下,不同滲透比值之纖維 束前壓力隨高度變化圖………………………………71 圖24.流量 5ml/s,k1/k2=4 擾動厚度區域圖……………72 圖25.擾動厚度和滲透度比值的關係………………………73 圖26.流量 5ml/s,k1/k2=8有無毛細壓力效應之比較圖…74 圖27.流量5ml/s,k1/k2=8有無毛細壓力效應之壓力比較圖75 圖28.毛細數隨時間變化圖…………………………………76 圖29.邊界流動面隨時間變化圖,文獻[51]………………77 圖30.無方向纖維蓆之孔隙分佈機率………………………78

    張智淵 , 轉注成型充填過程中氣泡形成之數值模擬 , 國立中央大學機械工程研究所博士論文 (1997).
    曾敦睦 , 應用蒙地卡羅法模擬及實驗觀測多孔性介質毛細位移之現象 , 國立中央大學機械工程學系碩士論文 (1998).
    葉建志 , 轉注成型充填過程之巨微觀流數值模擬 , 國立中央大學機械工程學系碩士論文 (1999).
    張修銘 ,轉注成型製程中氣泡形成機制之可視化探討 , 國立中央大學機械工程學系碩士論文 (1997).
    廖致欽 , 轉注成型之滲透率的量測與流場觀察 , 國立中央大學機械工程學系碩士論文 (1994).
    洪明宏 , 轉注射出成型製程中氣泡消長機制之分析 , 國立中央大學機械工程學系碩士論文 (1998).
    Richard S. Parnas and Frederick R. Phelan Jr. , “The Effect of Heterogeneous Porous Media on Mold Filling in Resin Transfer Molding” , National Institute of Standards and Technology , 53-60 (1991).
    N. Patel, V. Rohatgi , and L. James Lee , “Influence of Processing and Material Variables on Resin-Fiber Interface in Liquid Composite Molding” , Polymer Composites , Vol. 14 , No. 2 ,161-172 (1993).
    K. N. Kendall and C. D. Rudd , “Flow and Cure Phenemena in Liquid Composite Molding ” ,Polymer Composites , Vol. 15 , No. 5 , 334-347 (1994).
    T. Staffan Lundstrom and B. Rikard Gebart, “Influence From Process Parameters on Void Formation in Resin Transfer Molding” , Polymer Composites , Vol. 15 , No. 1 ,25-33 (1994).
    G. R. Palmese and V. M. Karbhari , “Effects of Sizing on Microscopic Flow in Resin Transfer Molding” , Polymer Composites , Vol. 16 , No. 4 ,313-318 (1995).
    Baichen Liu, Simon Bickerron and Suresh G. Advani, “Modelling and Simulation of Resin Transfer Moulding (Rtm) —Gate Control , Venting and Dry Spot Prediction” , Composite : Part A , 27a , 135-141 (1996).
    C. Lekakou and M. G. Bader , “Mathematical Modelling of Macro-and Micro-Infiltration in Resin Transfer Moulding (Rtm) ” ,Composite Part A 29a , 29-37 (1998).
    G. P. Androutsopoulos and R. Mann , “ Evaluation of Mercury Porosimeter Experiments Using A Network Structure Model ” , Chemical Engineering Science , Vol. 34 , 1203-1212 (1978).
    Masako Maejima , “Applying Capillarity to Estimation of Space Structure of Fabrics” , Textile Research Journal , Vol. 53 , 427-434 (1983).
    M. M. Dias and A. C. Payatakes , “ Network Models for Two-Phase Flow in Porous Media. Part 1. Immiscible Micro-Displacement of Non-Wetting Fluids” , J. Fluids Mech. , Vol. 161 , 305-336 (1986).
    R. Lenormand, E. Touboul and C. Zarcone. “Numerical Models and Experiments on Immiscible Displacement in Porous Media “ , J. Fluid Mech., Vol. 189 , 165-187 (1988).
    P. R. Griffin, S. M. Grove, P. Russell, D. Short and J. Summerscales, “The Effect of Reinforcement Architecture on The Ling-Range Flow in Fibrous Reinforcements” ,Composite Manufacturing , Vol. 6 , 221-235 (1995).
    G. P. Matthews, A. K. Moss and C. J. Ridgway, “ The Effect of Correlates Networks on Mercury Intrusion Simulation and Permeabilities of Sandstone and Other Porous Media” , Powder Technology , Vol. 83 , 61-77 (1995).
    T. Mathews, G. P. Matthews and S. Huggett, “ Estimating Particle Size Distributions from A Network Model of Porous Media” , Powder Technology , Vol. 104 , 113-198 (1999).
    Albert W. Chan and Roger J. Morgan, “Tow Impregnation During Resin Transfer Molding of Bi-Directional Nonwoven Fabrics” , Polymer Composites , Vol. 14 , No. 4 , 335-340 (1993).
    R. Frederick and Jr. Phelan, “A Generalized Model for The Transverse Fluid Permeability in Unidirectional Fibrous Media” , Polymer Composites , Vol. 17 , No. 2 , 222-230 (1996).
    A. Hammami , F. Trochu , R. Gauvin and S. Wirth “Directional Permeability Measurement of Deformed Reinforcement” , Journal of Reinforced Plastics and Composites , Vol. 15 , 552-562 (1996).
    D. G. Kiriakidis, G. H. Neale and E. Mitsoulis , “ The Effects of Capillary Forces on The Island Size Distribution in Two-Fluid Immiscible Displacement Flow in Porous Media” , J. Phys. A:Math. Vol. 24 , 3797-3805 (1991).
    D.G. Kiriakidis and G.H. Neale, “The Effects of Medium Thickness on The Island Size Distribution in Immiscible Displacement Flow in Porous Media”, Chem. Eng. Comm., Vol. 123 , 127-134 (1993).
    T. A. K. Sadiq, S. G. Advani and R. S. Parnas , “Experimental Investigation of Transverse Flow Through Aligned Cylinders” , Int. J. Multiphase Flow , Vol. 21 , No. 5 , 755-774 (1995).
    S. G. Advani, M. V. Bruschke and Parnas, “Flow and Rheology in Polymeric Composites Manufacturing”, Elsevier Amsterdam, Chap. 12 , 465-516 (1994).
    N. Patel and L. James Lee , “ Modeling of Void Formation and Removal in Liquid Compisite Molding. Part 1: Wettability Analysis” , Polymer Composites,Feberuary , Vol. 17, 97-103 (1996).
    N. Patel and L. James Lee , “ Modeling of Void Formation and Removal in Liquid Compisite Molding. Part 2: Model Development and Implementation”, Polymer Composites, Feberuary, Vol. 17, 104-114 (1996).
    Gibson L. Batch, Yung-Tin Chen and Christopher W. Macosko , “Capillary Impregnation of Aligned Fibrous Beds: Experiments and Model” , Journal of Reinforced Plastics and Composites , Vol. 15,1027-1051 (1996).
    K. L. Han, L. J. Lee and M. Liou , “Fiber Mat Deformation in Liquid Composite Molding. I: Experiment Analysis” , Polymer Composites , Vol. 14 , 144-150 (1993).
    W. B. Young and C. W. Tseng , “Study on The Pre-Heated Temperatures and Injection Pressures of The Rtm Process” , J. of Reinforced Plastics and Composites , Vol. 13 , 467-482 (1994).
    K. L. Han, L. J. Lee and M. Liou, “Fiber Mat Deformation in Liquid Composite Molding. II: Modeling”, Polymer Composites, Vol. 14 , 151-160 (1993).
    C. J. Wu, L. W. Hourng and J. C. Liao, “ Numerical and Experimental Study on The Edge Effect of Resin Transfer Molding ” , J. of Reinforced Plastics and Composites , Vol. 14 , 694-722 (1995).
    C. J. Wu and L. W. Hourng, “Permeable Boundary Condition For Numerical Simulation in Rein Transfer Molding ” , Polymer Engineering and Science , Vol. 35 , 1272-1281 (1995).
    Frederick M. Fowkes, “Role of Surface Agents in Wetting” , Shell Development Company, Emeryville Received July 22, Vol. 57 , 98-103 (1952).
    Richard Chandler, Jole Koplik, Kenneth Lerman and Andjorge F. Willemsen, “Capillary Displacement and Percolation in Porous Media” , J. Fluid Mech., Vol. 119 , 249-267 (1982).
    L. Paterson , “Diffusion Limited Aggregation and Two-Fluid Displacements in Porous Media ” , Phys. Rev. Lett. , Vol. 47 , 1621-1624 (1981).
    T. A. Witten Jr. and L. M. Sander , “ Diffusion Limited Aggregation , A Kinetic Critical Phenomenon ” , Phys. Rev. Lett. , Vol. 47 , 1400-1403 (1981).
    F. Boger , J. Feder and T. Jissang , “ Dynamics of Viscous Fingerinf Fravtals in Porous Media ” , Phys. Rev. A , Vol. 36 , 318-324 (1987).
    L. N. Shchur and S. S. Kosyakov , “ Probability of Incipient Spanning Clusters in Critical Two-Dimensional Percolation ” , Nuclear Physics B , Vol.63 , 664-666 (1998).
    D. A. Nield and A. Bejan, Convection in Porous Media, New York, Springer-Verlag (1992).
    J. Bear , Dynamics of Fluids in Porous Media , Dover Publication , New Youk (1972).
    F. A. L. Dullien , Porous Media Fluid Transport and Pore Structure , Academic Press , New York (1979).
    P. G. De Gennes, “Wetting:Static and Dynamics”,Reviews of Modern Physics , Vol. 57 , Part1 , 827-863 (1985).
    P. G. De Gennes, “Dynamic Capillary Pressure in Porous Media” , Europhysics Letters , Vol. 5 , 689-691 (1988).
    J. Feder , Flow in Porous Media , Lecture Notes , Physics Dept , University of Oslo (1995).
    L. Paterson , “Diffusion-Limited Aggregation and Two-Fluid Displacements in Porous Media ” , Phys. Rev. Lett., Vol. 52 , 1621-1624 (1984).
    E. W. Washburn , “The Dynamics of Capillary Flow” , Phys. Rev. , Vol. 19 , 273-283 (1921).
    A. Hammami , R. Gauvin and F. Trochu , “Modeling the edge effect in liquid composites molding” , Composites : Part A , Vol. 29 , 603-609 (1998).

    QR CODE
    :::