跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖振灴
Chen-Hung Liao
論文名稱: 利用井狀結構碟片提升儲存容量之模擬研究
Simulation of Improving Capacity with Use of Well-Array Disk
指導教授: 孫慶成
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 全像儲存同軸系統
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文引入平面鏡與全像碟片形成井狀結構碟片儲存資訊,可有效減少紀錄媒介的消耗,達到提升全像儲存系統儲存容量之目的。利用純量繞射理論與相位疊加法,建立一光學模型,模擬使用微透鏡陣列的同軸全像儲存系統,並精確描述光波在系統內的傳遞,與準確的預測不同的位置的平面鏡碟片對還原重建資訊的影響。


    In this thesis, we study a new scheme with planar mirror and well-structure to improve storage capacity by reducing consumption of the holographic storage material. Based on scalar diffraction theory and VOHIL model, we obtain an optical simulation model for a collinear storage system with micro lens array. Accordingly, we can precisely describe wave propagation in the system, and predict the effect on the diffracted signal by the planar mirror at different location.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 全像儲存技術之發展 4 1-3 論文大綱 9 第二章 原理介紹 10 2-1 全像術理論與演進 10 2-2 布拉格條件 14 2-3 耦合波理論 18 2-3-1 布拉格匹配 24 2-3-2 布拉格不匹配 26 2-4 波恩近似法 29 2-5 相位疊加法 34 第三章 同軸全像儲存系統之建立 38 3-1 同軸全像儲存 38 3-1-1 全像模擬的數學模型建立 40 3-1-2 加入透鏡陣列改良之同軸全像儲存系統 44 3-1-3 訊號源的選用與編解碼 46 3-2 全像模擬的數學模型建立 49 3-2-1 物光傳遞函數架構 50 3-2-2 平面鏡之函數模擬架構 51 3-3 全像儲存的數學模擬 54 3-3-1 模擬全像儲存 56 3-3-2 模擬全像讀取 59 3-4 儲存材料制備與其特性 62 第四章 系統繞射光影像品質之模擬分析 64 4-1 有/無反射鏡之比較 65 4-2 反射鏡離軸比較 67 4-3 反射鏡位移比較 69 4-4 曝光區域計算 71 第五章 結論 73 參考文獻 74 中英文名詞對照表 81

    [1] 楊敏鈺, 數位化時代下消費者社會網絡對消費型態之影響研究, 國立成功大學企業管理學系碩士論文, 中華民國九十五年.
    [2] P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. Lantz, H. Rothuizen, and R. Stutz, “The" millipede"-nanotechnology entering data storage,” IEEE Transactions on nanotechnology 99, 39-55 (2002).
    [3] 鄭東昇 and 樊國楨, 資訊安全管理系統與企業網路安全實作探討, 國立交通大學管理學院資訊管理學程碩士論文, 中華民國九十三年.
    [4] W. E. Dunphy, S. M. Halladay, M. E. Moy, and F. G. Munro, Data storage and protection system. 1997, Google Patents.
    [5] 劉明峴, 快閃記憶體儲存系統之可調式可靠性架構, 國立臺灣科技大學資訊工程系碩士論文, 中華民國九十九年.
    [6] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: The evolution of data to life-critical,” Don’t Focus on Big Data (2017).
    [7] T. Hoshizawa, K. I. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Japanese journal of applied physics 55, 09SA06 (2016).
    [8] L. Dhar, K. Curtis, and T. Fäcke, “Holographic data storage: Coming of age,” Nature photonics 2, 403 (2008).
    [9] M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Science & Applications 3, e177 (2014).
    [10] E. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Applied Optics 5, 1303-1311 (1966).
    [11] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proceedings of the IEEE 92, 1231-1280 (2004).
    [12] H. Horimai, X. Tan, and J. Li, “Collinear holography,” Applied Optics 44, 2575-2579 (2005).
    [13] G. A. Rakuljic, V. Leyva, and A. Yariv, Optical data storage by using orthogonal wavelength-multiplexed volume holograms (World Scientific, 1995).
    [14] K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic data storage: from theory to practical systems (John Wiley & Sons, 2011).
    [15] S. Kostyshen, The bridge to big data–nice work if you can get it, http://www.k2view.com/blog_post/the-bridge-to-big-data-nice-work-if-you-can-get-it/.
    [16] J. Goodman, Introduction to Fourier optics (Roberts & Company Publishers, 2008).
    [17] K. Anderson and K. Curtis, “Polytopic multiplexing,” Optics letters 29, 1402-1404 (2004).
    [18] R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Optics Express 18, 1091-1098 (2010).
    [19] J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Optics letters 42, 1377-1380 (2017).
    [20] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Applied Optics 35, 2403-2417 (1996).
    [21] D. Psaltis and H. Li, “3-Dimensional Holographic Disks,” Applied Optics 33, 3764-3774 (1994).
    [22] T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Optics Express 14, 3187-3192 (2006).
    [23] T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Optics letters 40, 2161-2164 (2015).
    [24] C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Optics letters 39, 6891-6894 (2014).
    [25] C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Applied Optics 40, 1253-1260 (2001).
    [26] T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Optics letters 38, 748-750 (2013).
    [27] H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Applied Optics 33, 3764-3774 (1994).
    [28] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
    [29] P. J. Van Heerden, “Theory of optical information storage in solids,” Applied Optics 2, 393-400 (1963).
    [30] D. Psaltis and G. W. Burr, “Holographic data storage,” Computer 31, 52-60 (1998).
    [31] G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A. Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 gigapixels/in. 2,” Optics letters 26, 444-446 (2001).
    [32] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Optics letters 19, 993-994 (1994).
    [33] T. Sandhu, Holographic storage promises 1.6TB per disc by 2011. 300GB on show today, http://hexus.net/tech/news/storage/8150-holographic-storage-promises-16tb-per-disc-2011-300gb-show-today/.
    [34] K. Tanaka, “High density recording of 270Gbits/inch^ 2 in a coaxial holographic storage system,” International Symposium on Optical Memory 2007 (ISOM'07) Technical Digest.
    [35] 楊繼賢, 使用微透鏡陣列之同軸全像儲存系統與其考慮材料紀錄動態範圍之模型建立, 國立中央大學光電所碩士論文, 中華民國一百零六年.
    [36] W. Klein, “Theoretical efficiency of Bragg devices,” Proceedings of the IEEE 54, 803-804 (1966).
    [37] 余業緯, 同軸全像儲存系統之特性與改良及溫度補償, 國立中央大學光電所博士論文, 中華民國九十八年.
    [38] 鄭智元, 同軸式全像儲存系統記錄介質具有離焦之研究, 國立中央大學光電所博士論文, 中華民國一百零五年.
    [39] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal 48, 2909-2947 (1969).
    [40] A. Yariv and P. Yeh, Optical waves in crystals (Wiley New York, 1984).
    [41] 鄧敦建, 體積全像於光學元件及光儲存之研究, 國立中央大學光電所博士論文, 中華民國九十六年.
    [42] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage (Springer, 2000).
    [43] D. J. Griffiths, Introduction to electrodynamics. 2005, AAPT.
    [44] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Optical Engineering 42, 1184-1186 (2003).
    [45] T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Optics letters 31, 1208-1210 (2006).
    [46] 鄭智元, 余業緯, and 孫慶成, “同軸式全像資訊儲存系統之理論模型,” 科儀新知 73-84 (2014).
    [47] Y. W. Yu, C. Y. Chen, and C. C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Optics letters 35, 1130-1132 (2010).
    [48] S. Yasuda, Y. Ogasawara, J. Minabe, K. Kawano, M. Furuki, K. Hayashi, K. Haga, and H. Yoshizawa, “Optical noise reduction by reconstructing positive and negative images from Fourier holograms in coaxial holographic storage systems,” Optics letters 31, 1639-1641 (2006).
    [49] K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Optics Express 15, 16196-16209 (2007).
    [50] Y. W. Yu, S. Xiao, C. Y. Cheng, and C. C. Sun, “One-shot and aberration-tolerable homodyne detection for holographic storage readout through double-frequency grating-based lateral shearing interferometry,” Optics Express 24, 10412-10423 (2016).
    [51] S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Japanese journal of applied physics 45, 1246 (2006).
    [52] 謝舒菁, 同軸式體積全像儲存系統之研究與改良, 國立中央大學光電所碩士論文, 中華民國九十六年.
    [53] 鄭智元, 利用相位調製改良同軸式體積全像儲存系統, 國立中央大學光電所碩士論文, 中華民國九十七年.
    [54] A. Yamakawa, M. Saito, T. Yamagami, and K. Watanabe, “New Concept of Coaxial Holographic Recording,” IWHM & D 2009 Digests.
    [55] M. R. Ayres and R. R. Mcleod, “Medium consumption in holographic memories,” Applied Optics 48, 3626-3637 (2009).
    [56] F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Optics letters 21, 896-898 (1996).
    [57] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Optics Communications 175, 67-74 (2000).
    [58] 陳柏霖, 以PQ衍生物為光敏感劑的感光全像高分子材料, 國立交通大學材料科學與工程所博士論文, 中華民國九十八年.
    [59] K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for volume holographic storage,” Optical Engineering 42, 1390-1397 (2003).
    [60] S. Lin, Y. Hsiao, and K. Hsu, “Preparation and characterization of Irgacure 784 doped photopolymers for holographic data storage at 532 nm,” Journal of Optics A: Pure and Applied Optics 11, 024012 (2009).
    [61] K. Kuroda, Y. Matsuhashi, R. Fujimura, and T. Shimura, “Theory of polarization holography,” Optical review 18, 374 (2011).
    [62] J. Wang, G. Kang, A. Wu, Y. Liu, J. Zang, P. Li, X. Tan, T. Shimura, and K. Kuroda, “Investigation of the extraordinary null reconstruction phenomenon in polarization volume hologram,” Optics Express 24, 1641-1647 (2016).
    [63] C. Li, L. Cao, Q. He, and G. Jin, “Holographic kinetics for mixed volume gratings in gold nanoparticles doped photopolymer,” Optics Express 22, 5017-5028 (2014).
    [64] B. A. Kowalski, A. C. Sullivan, M. D. Alim, and R. R. Mcleod, “Predictive modeling of two-component holographic photopolymers,” Holography: Advances and Modern Trends V.
    [65] T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, and K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory?,” Optical Data Storage.
    [66] C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Optics Express 15, 18111-18118 (2007).
    [67] Y. W. Yu, T. C. Teng, S. C. Hsieh, C. Y. Cheng, and C. C. Sun, “Shifting selectivity of collinear volume holographic storage,” Optics Communications 283, 3895-3900 (2010).
    [68] J. M. Palmer and B. G. Grant, The art of radiometry (SPIE Press Bellingham, 2010).
    [69] D. M. Tsai and C. T. Lin, “Fast normalized cross correlation for defect detection,” Pattern Recognition Letters 24, 2625-2631 (2003).
    [70] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Optics letters 31, 2193-2195 (2006).
    [71] W. T. Chien, C. C. Sun, and I. Moreno, “Precise optical model of multi-chip white LEDs,” Optics Express 15, 7572-7577 (2007).

    QR CODE
    :::